

TOWN OF MIDDLEBURY, VERMONT

SEWER SYSTEM EVALUATION STUDY - PHASE I

SEPTEMBER 2013

TABLE OF CONTENTS

SECTION 1	EXE	CUTIVE SUMMARY 1-1
SECTION 2	INTR	ODUCTION2-1
	2.1	Background2-1
	2.2	Purpose2-1
	2.3	Scope of Services2-2
SECTION 3	PUM	P STATION FLOW EVALUATION
	3.1	General3-1
	3.2	High School Pump Station (PS#1)3-1
	3.3	Middlebury Commons Pump Station (PS#2)3-1
	3.4	Weybridge Pump Station (PS#3)3-1
	3.5	Frog Hollow Pump Station (PS#4)3-2
	3.6	Route 125 Pump Station (PS#5)
	3.7	Seminary Pump Station (PS#6)3-2
	3.8	Rogers Pump Station (PS#7)
	3.9	Seymour Pump Station (PS#8)
	3.10	Weybridge Pump Station (PS#9)3-3
		Green Mountain Pump Station (PS#10)
		Bakery Pump Station (PS#11)3-3
		Halladay Pump Station (PS#12)3-3
	3.14	Halpin Pump Station (PS#13)3-4
		Painter Pump Station (PS#14)
		Meadow Pump Station (PS#15)
	3.17	South Ridge Pump Station (PS#16)
	3.18	Battell Pump Station (PS#26)
	3.19	Pump Station Service Areas Recommended for Further Evaluation 3-5
SECTION 4	NIGH	HT-TIME FLOW GAUGING
	4.1	General4-1
	4.2	1 st Night on April 11, 20134-1
		4.2.1 General4-1
		4.2.2 High School Pump Station (PS #1)4-2
		4.2.3 Seminary Pump Station (PS #6)
		4.2.4 Weybridge Pump Station (PS #9)
		4.2.5 Halladay Pump Station (PS #12)4-3

TABLE OF CONTENTS

		4.2.6 Summers of 1st Night and Decommendations for Old Night	
	4.3	4.2.6 Summary of 1 st Night and Recommendations for 2 nd Night 2nd Night on May 1, 2013	
	4.0	4.3.1 General	
		4.3.2 High School Pump Station (PS #1)	
		4.3.3 Seminary Pump Station (PS #6)	
	4.4	3rd Night on June 6, 2013	
		4.4.1 General	
		4.4.2 High School Pump Station (PS #1)	
		4.4.3 Seminary Pump Station (PS #6)	
		4.4.4 Weybridge Pump Station (PS #9)	
		4.4.5 Halladay Pump Station (PS #12)	
	4.5	Summary of Areas of Excessive Infiltration	. 4-9
SECTION 5		HANGE STREET MANHOLE INSPECTIONS	
	5.1	General	
	5.2	Results of Manhole Inspections	. 5-1
SECTION 6	MAII	N PUMP STATION CAPACITY EVALUATION	
	6.1	General	. 6-1
	6.2	Pump Capacity Testing	. 6-1
		6.2.1 1 st Round- August 29, 2012	
		6.2.2 2nd Round- October 11, 2012	
		6.2.3 Forcemain Headloss	
	6.3	Forcemain Pigging	. 6-3
SECTION 7	REC	OMMENDED PLAN	
	7.1	General	. 7-1
	7.2	Phase II Sewer System Evaluation Study Areas	
	7.3	Exchange Street Trunk Sewer Manhole Improvements	
	7.4	Main Pumping Station Capacity	
ADDENDIOE			
APPENDICES	•		
APPENDIX A		Figures	
APPENDIX B		Pump Station Flow Data	

TABLE OF CONTENTS

APPENDIX C

APPENDIX D

2nd Night Flow Gauging Data - May 1, 2013

APPENDIX E

3rd Night Flow Gauging Data - June 6, 2013

APPENDIX F

Manhole Observation Sheets

APPENDIX G

Wet Well Sketches

APPENDIX H

Wet Well Drawdown Volume Calculations

1st Night Flow Gauging Data - April 11, 2013

APPENDIX I 1st Round Drawdown Capacity Calculations

APPENDIX J 2nd Round Drawdown Capacity Calculations & System Curve

APPENDIX K Forcemain Headloss and System Curve Calculations

APPENDIX L Ice Pigging Proposal and Information

SECTION 1 EXECUTIVE SUMMARY

SECTION 1 EXECUTIVE SUMMARY

The Town of Middlebury believes that groundwater infiltration and/or stormwater inflow contribute significant volumes of extraneous water to the sanitary sewer collection system during wet weather periods. The Town retained Aldrich + Elliott, PC to prepare a Sewer System Evaluation Study (SSES) to determine the location and magnitude of infiltration/inflow in the wastewater collection system. The purpose of the SSES is to identify those areas within the wastewater collection system that appear to be accepting excessive infiltration and/or inflow (I/I), estimate the volume of infiltration and inflow and make recommendations for further evaluation.

In 2010 the Town completed an upgrade to the Main Pump Station which added an expanded wet well and grit removal facilities to reduce overflows at the station to be in compliance with the State of Vermont CSO Control Policy and to reduce the amount of grit accumulating in the forcemain. The pumps were originally designed to discharge up to 6.2 mgd with two (2) pumps running. The operators indicated that the 6.2 mgd was achieved during the first few years of operations, but a steady decrease was observed after. The accumulation of grit in the forcemain before the grit removal facilities were installed is the likely cause.

The Town also has concerns about the physical condition of the manholes and sewerline for the Exchange Street trunk sewer that runs between Seymour Street and the Cabot plant mostly along the railroad tracks. Manhole inspections were performed for the manholes along the Exchange Street truck sewer to assess the physical condition of the manholes, sewerline and make recommendations for further evaluation or rehabilitation.

Besides the Main Pump Station, the Town owns, operates and maintains eighteen (18) other wastewater pump stations. The flow data and meter readings for each of these pump stations were evaluated to assess the dry weather base flows and wet weather contribution for each individual service area based on the pump station flows. The magnitude of the I/I based on the wastewater pumping was evaluated for each pump station service area. There were four (4) pump station service areas identified with excessive I/I that were recommended for night-time flow gauging:

- High School Pump Station (PS #1)
- Seminary Pump Station (PS #6)
- Weybridge Pump Station (PS #9)
- Halladay Pump Station (PS #12)

Night-time flow gauging was initially scheduled to be conducted during the spring and fall of 2012. Due to low snowfall in the winter of 2011/2012, an extremely dry spring of 2012, with seasonally low precipitation totals and exceptionally low seasonal high groundwater, the night-time flow gauging was pushed back until 2013. The night-time flow gauging was performed in the spring of 2013 to insure that flow measurement was performed during periods of high groundwater flows.

The first night of night-time flow gauging was conducted on April 11, 2013. Flow was measured in twenty two (22) manholes. The second night of flow gauging was conducted on May 1, 2013. Flow was measured in twelve (12) manholes. For new construction, an infiltration allowance of 300 gal/day/in-mile is assumed. Any unit flow greater than 1,500 gal/day/in-mile is considered excessive

for this study. Twenty two (23) pipe segments totaling 15,093 lineal feet were deemed to have an excessive amount of infiltration and are summarized in Table 1.1.

Table 1.1

Areas Recommended for Phase II- Sewer System Evaluation Summary of Areas with

Excessive Infiltration

			Pipe
Priority	Service Areas/		Length
Ranking	Street	Segment Location	(feet)
1	PS#9- Weybridge St	09-013 / 09-015	400
2	PS#1 Woodland Park	0701 / 0092	360
3	PS#9- Cross Country	09-003 / 09-001W	635
4	PS#1- Monroe St. CC	0693 / 0690	590
5	PS#12- Middle Rd S	12-001 / Unmarked #1	650
6	PS#6- Seminary St. Ext. CC	06-021 / 06-028	1,326
7	PS#6- Washington St.	06-040 / 06-039	117
8	PS#1- Buttolph Dr.	0659 / 0701	330
9	PS#6- Seminary St. Ext.	06-014 / 06-021	85
10	PS#1- HS Area	0682 / 0681	385
11	PS#6- Colonial Drive S.	06-046 / 06-052	415
12	PS#12- RT 7/Cady Rd.	Unnumbered / 12-008	500
13	PS#1- HS Area	0682 / 0673	835
14	PS#1- Charles Ave	0673 / 0677	960
15	PS#12- RT 7/Foote St	12-005 / 12-006	170
16	PS#1 – Buttolph Drive	0655 / 0659	230
17	PS#12- RT 7/Middle Rd.	12-004 / 12-005	90
18	PS#6- Colonial Drive	06-039 / 06-051	830
19	PS#12- Middle Rd S	Unmarked #3 / End of US 7	2,520
20	PS#1 - Woodland Park	0701 / 0095	890
21	PS#6- Peterson Terr.	06-028 / 06-029	540
22	PS#6- Seminary St. Ext.	06-014 / 06-024	1,600
23	PS#9- Weybridge St	09-011 / 09-022	635
		Totals	15,093

These 23 segments are recommended for a Phase II Sewer System evaluation study consisting of manhole inspections and sewerline flushing/TV inspections. The light flushing and TV inspection typically costs approximately \$2.00 per linear foot of pipeline which would make the total cost of flushing and TV inspection approximately \$40,000.

Fourteen (14) manhole structures along the Exchange Street trunk sewer were inspected on December 20, 2013. The deficiencies of these manholes included:

- · Significant bacterial slime growth on the walls.
- Minor deterioration and spalling of concrete walls.
- Root growth on walls,
- Infiltration in some manholes.

Slip lined pipe penetrating too far into the manhole causing flow restrictions.

Recommendations for manhole rehabilitation are included in the report.

Pump capacity testing at the Main Pumping Station indicates that the existing flow meter is reading approximately 14% low. Even with the flow meter error, the existing pumps are pumping approximately 5.1 mgd instead of the original 6.2 mgd. Based on measuring system pressure and calculating the C factor based on calculated forcemain head loss, it is likely that the low pumping rate and higher system pressure is the result of grit accumulated in the forcemain.

Standard poly pigging operations were evaluated for pigging the forcemain and determined to be not viable because of the likelihood of the pig getting stuck. These conditions include:

- No pig insertion or retrieval stations.
- Two (2) 90° bends at the WWTF.
- Two (2) wyes in the forcemain with straight runs against closed valves.
- Change in pipe size from 16" to 18".
- Volume of fluid needed for pigging vs. the volume of wet well storage available before overflow.

A review and pricing for ice pigging of the forcemain was performed. Ice pigging is an innovative/alternative method of pigging forcemains. Ice pigging combines the operational advantages of flushing with the cleaning impact of soft pigging. The ice pig is a semi-solid that is pumped like a liquid and flows through changes in diameter, bends and fittings without blockage. Ice pigging has a minimum impact on operations. The ice pig is simply pumped into the system and either melts in the pipe or is recovered at the WWTF without excavation.

The cost of ice pigging the forcemain is a total of \$108,000 or a unit price cost of \$36,000 for the 1st three (3) days and \$12,000 per day if operations are conducted or \$6,000 per day if cancelled early.

SECTION 2 INTRODUCTION

SECTION 2 INTRODUCTION

2.1 BACKGROUND

The Town of Middlebury is located in Addison County in the central western portion of Vermont as shown on Figure No. 1 (Location Plan). Under the Phase I sewer system investigation, pump station flow evaluations, manhole inspections and night-time flow gauging were performed. Figures are provided in Appendix A showing the areas that were investigated and inspected.

The Town maintains a wastewater collection system as shown on Figure No. 2 (Wastewater Collection System Map). There are thirty four (34) pump stations within the collection system of which eighteen are owned and maintained by the Town. Ultimately, the majority of the wastewater flow is conveyed to the Main Pump Station located at the end of Lucius Shaw Lane. This pump station conveys the wastewater through a forcemain to the wastewater treatment facility (WWTF) located at the end of Industrial Avenue for treatment prior to discharge to the Otter Creek River.

The age of various collection systems range from relatively new to very old. Earlier systems were not necessarily designed to keep infiltration from entering the collection system.

In 2010 the Town completed an upgrade to the Main Pump Station which added an expanded wet well and grit removal facilities to reduce overflows at the station to be in compliance with the State of Vermont CSO Control Policy and to reduce the amount of grit accumulating in the forcemain. The pumps were originally designed to discharge up to 6.2 mgd with two (2) pumps running. The operators indicated that the 6.2 mgd was achieved during the first few years of operations, but a steady decrease was observed after. The accumulation of grit in the forcemain before the grit removal facilities were installed is the likely cause.

The Town of Middlebury believes that groundwater infiltration and/or stormwater inflow contribute significant volumes of extraneous water to the sanitary sewer collection system during wet weather periods. The Town retained Aldrich + Elliott, PC to prepare a Sewer System Evaluation Study (SSES) to determine the location and magnitude of infiltration/inflow in the wastewater collection system.

There have been overflows at Pump Station No. 9 which do not meet the State of Vermont CSO Control Policy.

The Town also has concerns about the physical condition of the manholes and sewerline for the Exchange Street trunk sewer that runs between Seymour Street and the Cabot plant mostly along the railroad tracks.

2.2 PURPOSE

The purpose of the SSES is to identify those areas within the wastewater collection system that appear to be accepting excessive infiltration and/or inflow, estimate the volume of infiltration and inflow and make recommendations for further evaluation. Continuous flow metering within the Pump Station No. 9 collection system was performed to identify areas of inflow and make recommendations for further evaluation. Manhole inspections were performed for the manholes along the Exchange

Street truck sewer to assess the physical condition of the manholes, sewerline and make recommendations for further evaluation or rehabilitation.

2.3 SCOPE OF SERVICES

The scope of this project is to present the findings of the SSES and to make recommendations for further evaluation and includes the following:

- Review of existing data and records
- Review of pump station pump run times to prioritize each pump station for I/I analysis.
- Manhole inspections to identify locations for night-time flow gauging.
- Two (2) nights of night-time flow gauging to determine areas of excessive infiltration
- Analysis of flow gauging results and prioritizing areas of excessive infiltration
- Identify areas for further evaluation.
- One (1) day of manhole inspections for the Exchange Street trunk sewer.
- Flow capacity testing at the Main Pump Station.
- Evaluate alternatives for regaining capacity at the Main Pumping Station.
- Recommendations
- Conduct project review meetings
- Report

SECTION 3 PUMP STATION FLOW EVALUATION

SECTION 3 PUMP STATION FLOW EVALUATION

3.1 GENERAL

Besides the Main Pump Station, the Town owns, operates and maintains eighteen (18) other wastewater pump stations. The flow data and meter readings for each of these pump stations were evaluated to assess the dry weather base flows and wet weather contribution for each individual service area based on the pump station flows. Pump hour meter data for pump stations are summarized for the period of January 1, 2009 to December 31, 2011. Graphs of the estimated flows for each pump station using the pump run times are provided in Appendix B.

The wet weather flow periods for each pump station were compared to the dry weather flow periods to estimate the extent of the annual infiltration/inflow contribution for each service area. The magnitude of the I/I based on the wastewater pumping was evaluated for each pump station service area. Pump station service areas identified with excessive I/I were recommended for night-time flow gauging. The remaining pump station service areas were eliminated from further evaluation.

3.2 HIGH SCHOOL PUMP STATION (PS #1)

The flow data shows that the High School service area does exhibit substantial infiltration/inflow. The flow through the High School Pump Station averaged approximately 30,000 gallons per day during the summer and winter months of 2009 thru 2011, or yearly baseline as depicted on the graphs in Appendix B. During the spring months, the average flow was approximately 45,000 gpd. The data shows that there is a 50% increase in the spring wet weather flow over the dry weather flow.

Because the sewer service area showed substantial infiltration/inflow, it was evaluated further.

3.3 MIDDLEBURY COMMONS PUMP STATION (PS #2)

The flow data shows that the Middlebury Commons Pump Station service area exhibits minimal infiltration/inflow. Flows during the dry weather periods average approximately 4,300 gpd. During wet weather periods flow increase to approximately 5,100 gpd.

Because the sewer service area does not show any substantial infiltration, it was eliminated from further evaluation.

3.4 WEYBRIDGE PUMP STATION (PS #3)

The flow data shows that the Weybridge Pump Station No. 3 service area exhibits significant infiltration/inflow during wet weather periods. The flow through the Weybridge Pump Station averaged 210,000 gpd during dry weather periods from 2009 to 2011. During wet weather periods, flow increased by approximately 70,000 to 120,000 gpd to a total of approximately 280,000 gpd to 330,000 gpd. On average wet weather flows increase approximately 33% over the dry weather flows.

Even though this service exhibits significant infiltration, the Town did not want to evaluate this service area further because it is actively undertaking sewer system rehabilitation projects in this area.

3.5 FROG HOLLOW PUMP STATION (PS #4)

The flow data shows that the Frog Hollow Pump Station service area exhibits minimal infiltration/inflow. The baseline flow through the Frog Hollow Pump Station during dry weather flows is approximately 20,000 gpd. The flow through the Frog Hollow Pump Station during wet weather flow periods averaged approximately 27,000 gpd.

The actual total infiltration increase per day is negligible in comparison with other pump stations and did not warrant further investigation at this time.

3.6 ROUTE 125 PUMP STATION (PS #5)

The flow data shows that the Route 125 Pump Station service area exhibits moderate infiltration/inflow during wet weather periods. The average flow during dry weather periods is approximately 4,500 gpd. In contrast, the wet weather flows averaged approximately 10,600 gpd.

The actual total infiltration increase per day is negligible in comparison with other pump stations and did not warrant further investigation at this time.

3.7 SEMINARY PUMP STATION (PS #6)

The flow data shows that the Seminary Pump Station service area exhibits substantial infiltration/inflow. The flow during dry weather periods averaged approximately 26,000 gpd. The flows experienced during wet weather periods in the spring at the Seminary Pump Station averaged approximately 43,000 gpd. The 17,000 gpd increase during wet weather periods is approximately 65% greater than dry weather periods.

Because the sewer service area showed substantial infiltration/inflow, it was evaluated further.

3.8 ROGERS PUMP STATION (PS #7)

The flow data shows that the Rogers Pump Station service area exhibits substantial infiltration/inflow. The data shows that approximately 75,000 gpd passed through the Rogers Pump Station during dry weather periods from 2009 to 2011. During wet weather flows in that same time frame, the Rogers Pump Station experienced increases of flows from 35,000 to 140,000 gpd. The 140,000 gpd difference between dry and wet weather flow periods was experienced in 2011.

The Halliday Pump Station pumps through to the Rogers Pump Station. Since the higher I/I flows at this station are attributed to the Halliday Pump Station, this service area did not warrant further investigation at this time.

3.9 SEYMOUR PUMP STATION (PS #8)

The flow data shows that the Seymour Pump Station experienced minor infiltration/inflow during the 2009 to 2011 time period. The dry weather flow is approximately 2,200 gpd. During wet weather periods, the flow increase to an average of approximately 3,100 gpd.

The actual total infiltration increase per day is negligible in comparison with other pump stations and did not warrant further investigation.

3.10 WEYBRIDGE PUMP STATION (PS #9)

The flow data shows that the Weybridge Pump Station service area exhibits substantial infiltration/inflow. The average dry weather flow for 2009 to 2011 is approximately 37,000 gpd. In comparison, the wet weather flows during the same time periods increased by approximately 35,000 gpd to a total of 72,000 gpd. The average increase of wet weather flow to dry weather flow is approximately 95%.

Because the sewer service area showed substantial infiltration/inflow and has a history of overflows, it was evaluated further.

3.11 GREEN MOUNTAIN PUMP STATION (PS #10)

The flow data shows that the Green Mountain Pump Station service area exhibits minimal infiltration/inflow. The dry weather flows in 2009 thru 2011 ranged from approximate 2,000 to 3,250 gpd. The wet weather flows ranged from approximately 6,000 to 8,000 gpd.

The actual total flow infiltration increase per day is negligible in comparison with other pump stations and did not warrant further investigation.

3.12 BAKERY PUMP STATION (PS #11)

The flow data shows that the Bakery Pump Station service area exhibits minimal infiltration/inflow. The data shows that approximately 6,000 gpd passed through the Bakery Pump Station during dry weather flow periods. In contrast, the flow through the pump station increased to approximately 7,500 gpd during wet weather periods.

Because the sewer service area did not show any substantial infiltration/inflow, it was eliminated from further evaluation.

3.13 HALLADAY PUMP STATION (PS #12)

The flow data show that the Halladay Pump Station service area exhibits substantial infiltration/inflow. Based on the 2009 to 2011 flow data, an average of 41,000 gpd passed through the pump station during dry weather flow periods. The wet weather flow increased to an average of 68,000 gpd.

Because the sewer service area showed substantial infiltration/inflow, it was evaluated further.

3.14 HALPIN PUMP STATION (PS #13)

The flow data shows that the Halpin Pump Station service area exhibits moderate infiltration/inflow. The dry weather flows ranged from approximately 5,250 to 6,000 gpd during 2009 to 2011. Wet weather flows increased between approximately 9,000 to 11,000 gpd.

The actual total flow infiltration increase per day is negligible in comparison with other pump stations and did not warrant further investigation at this time.

3.15 PAINTER PUMP STATION (PS #14)

The flow data shows that the Painter Pump Station service area exhibits minimal infiltration/inflow. The dry weather flow averaged approximately 2,000 gpd. Comparatively, the wet weather flow was approximately 4,000 gpd.

The actual total flow infiltration increase per day is negligible in comparison with other pump stations and did not warrant further investigation at this time.

3.16 MEADOW PUMP STATION (PS #15)

The flow data shows that the Meadow Pump Station service area exhibits minimal infiltration/inflow. The dry weather period flows are approximately 2,600 gpd, with an increase of approximately 1,000 gpd during wet weather periods.

Because the sewer service area does not show any substantial infiltration, it was eliminated from further evaluation.

3.17 SOUTH RIDGE PUMP STATION (PS #16)

The flow data shows that the South Ridge Pump Station service area exhibits moderate infiltration/inflow. During dry weather periods in the summer and winter, the average flow is approximately 3,800 gpd. Wet weather flows during the spring increased to approximately 10,000 gpd.

The actual flow infiltration increase per day is negligible in comparison with other pump stations and did not warrant further investigation at this time.

3.18 BATTELL PUMP STATION (PS #26)

The flow data shows that the Battell Pump Station service area does exhibit substantial infiltration/inflow. The baseline flow through the Battell Pump Station during dry weather flows was approximately 33,000 gpd from 2009 to 2011. The flow during that same time period in the spring averaged 61,000 gpd. Wet weather flow increases ranged from 22,000 to 45,000 gpd.

The Town decided that it did not want to look at this service area at this time.

3.19 PUMP STATION SERVICE AREAS RECOMMENDED FOR FURTHER EVALUATION

The following four (4) pump stations exhibit high I/I during the spring and were selected for further investigation:

- High School Pump Station (PS #1)
- Seminary Pump Station (PS #6)
- Weybridge Pump Station (PS #9)
- Halladay Pump Station (PS #12)

The following two (2) pump stations experienced high infiltration/inflow but were not investigated at the request of the Town:

- Roger Pump Station (PS# 7)
- Battell Pump Station (PS# 26)

SECTION 4 NIGHT-TIME FLOW GAUGING

SECTION 4 NIGHT-TIME FLOW GAUGING

4.1 General

Initial meetings were conducted with the operators to identify potential pipe segments and locations which may receive excessive infiltration. Night-time flow gauging was initially scheduled to be conducted during the spring and fall of 2012. Due to seasonally low precipitation totals and exceptionally low seasonal high groundwater, the night-time flow gauging was pushed back until 2013. The night-time flow gauging was performed in the spring of 2013 to insure that flow measurements were performed during periods of high groundwater flow. In most cases, an inspection was conducted of each manhole in advance to verify the structure was clean and suitable for field flow measurement.

On April 11, May 1, and June 6, 2013 between the hours of 11:00 pm and 5:00 am, night-time flow gauging was performed in manhole structures at "key" locations in the four (4) pump station service areas. The night-time flow gauging is conducted in the spring when seasonal high groundwater is typically at its highest. The 1st night was used as a system wide gauging of the priority areas. After the 1st night-time data was analyzed, the locations for the 2nd and 3rd nights were used to further define and isolate the areas of excessive infiltration from the 1st night of gauging. Night-time flow isolation allows for determining the specific reaches of sewer that have excessive infiltration during periods of low sewage use. The typical design allowance for infiltration of new sewerlines is 300 gallons/inch/diameter/mile/day. For this study, excessive flow is defined as flow that exceeds 1,500 gpd/in-mile.

4.2 1st Night on April 11, 2013

4.2.1 General

The 1st night of flow gauging was performed on the evening of April 11, 2013 from the hours of 11:00 pm through 5:00 am. Typically, a larger area is covered on the 1st night to eliminate those areas which do not need further investigation and identify areas that need to be broken down further on the 2nd night. Nathan Pion from Aldrich + Elliott, PC entered manhole structures and measured the actual flows using v-notch weirs installed in the inlet pipelines. Assistance with confined space entry was provided by Paul Lengyel and Dean Rheaume of the Town of Middlebury. Traffic control was utilized as all manhole structures were in high traffic areas. The flow was measured at approximately 22 manholes. The gauging locations are shown on Figure No. 3 thru 6 in Appendix A. The measured flow for each location along with the segment flow and infiltration rate per segment is summarized in Appendix C for the 1st night.

4.2.2 High School Pump Station (PS #1)

Figure No. 3 provides a map of the gauging locations along with the total measured flow, segment flow and infiltration flow rate. The following is a summary of the flow gauging results:

- A significant flow rate (1,755 gpd or 5,036 gpd/in-mi) was calculated in the pipe segment along Buttolph Drive (SMH 0655 to SMH 0659)
- A significant flow rate (11,590 gpd or 1,439 gpd/in-mi) was calculated in the pipe segment along Buttolph Drive (SMH 0659 to the end of Swanage Street/Woodland Park)
- A significant flow rate (5,986 gpd or 2,502 gpd/in-mi) was calculated in the pipe segment near the High School Pump Station (SMH 0693 to SMH 0655)
- A significant flow rate (3,090 gpd or 2,450 gpd/in-mi) was calculated in the pipe segment along Charles Avenue (SMH 0673 to SMH 0677)
- A significant flow rate (4,690 gpd or 8,040 gpd/in-mi) was calculated in the pipe segment near the High School (SMH 0682 to SMH 0681)
- A significant flow rate (6,580 gpd or 4,657 gpd/in-mi) was calculated in the pipe segment near the High School (SMH 0682 to SMH 0673)
- Minimal flow was observed in the following pipe segments and these segments were excluded from further evaluation:
 - Buttolph Drive between SMH 0655 and the end of Monroe Street
 - o Buttolph Drive between SMH 0659 and SMH 0644
 - o Charles Avenue between SMH 0673 and SMH 0674
 - o US 7 between SMH 0677 and SMH 0693
 - o US 7 between SMH 0677 and SMH 0647
 - High School Pump Station between SMH 0682 and SMH 0658
 - High School Pump Station between SMH 0693 and Overbrook Drive.

4.2.3 Seminary Pump Station (PS #6)

Figure No. 4 provides a map of the gauging locations along with the total measured flow, segment flow and infiltration flow rate. The following is a summary of the flow gauging results:

- A significant flow rate was calculated along Seminary Street in the following locations:
 - 13,460 gpd or 3,045 gpd/in-mi from SMH 06-001 to the end of Forbes Circle
 - 1,633 gpd or 12,680 gpd/in-mi from SMH 06-014 to SMH 06-021
 - o 4,690 gpd or 1,935 gpd/in-mi from SMH 06-014 to Battell Woods Condos
 - 12,782 gpd or 6,362 gpd/in-mi from SMH 06-021 to SMH 06-028
- A significant flow rate was calculated along Washington Street in the following locations:
 - o 3,689 gpd or 2,933 gpd/in-mi from SMH 06-039 to the end of Peterson Terrace
 - o 9,243 gpd or 3,408 gpd/in-mi from SMH 06-039 to SMH 06-044
 - 5,798 gpd or 32,707 gpd/in-mi from SMH 06-040 to SMH 06-039
- Minimal flow was observed in the following pipe segments and these segments were excluded from further evaluation:
 - Seminary Street between SMH 06-021 to the end of Seminary Street Ext.
 - Washington Street between SMH 06-028 to SMH 06-040
 - Washington Street between SMH 06-044 to SMH 06-041
 - Washington Street SMH 06-040 had an 8" stub with no flow.

4.2.4 Weybridge Pump Station (PS #9)

Figure No. 5 provides a map of the gauging locations along with the total measured flow, segment flow and infiltration flow rate. The following is a summary of the flow gauging results:

- A significant flow rate (2,975 gpd or 2,550 gpd/in-mi) was calculated in the cross country pipe segment near Pump Station No. 9 on Weybridge Street (SMH 09-003 to SMH 09-002W)
- A significant flow rate (1,458 gpd or 1,515 gpd/in-mi) was calculated in the pipe segment along Weybridge Street (SMH 09-011 to SMH 09-022).
- A significant flow rate (16,280 gpd or 12,158 gpd/in-mi) was calculated in the pipe segment along Weybridge Street (SMH 09-013 to SMH 09-015).
- Minimal flow was observed in the following pipe segments and these segments were excluded from further evaluation:
 - o Pulp Mill Bridge Road between SMH 09-002W and the end of Otter Creek Lane.
 - Pulp Mill Bridge Road between SMH 09-002W and SMH 09-005W.
 - o Pulp Mill Bridge Road between SMH 09-005W and SMH 09-012W.
 - Pulp Mill Bridge Road between SMH 09-005W and SMH 09-0013W(End)
 - o Pulp Mill Bridge Road between SMH 09-005W and SMH 09-006W(End)
 - Weybridge Street between SMH 09-011 and SMH 09-012
 - Weybridge Street between SMH 09-011 and SMH 09-013
 - Weybridge Street between SMH 09-013 and SMH 09-023

4.2.5 Halladay Pump Station (PS #12)

Figure No. 6 provides a map of the gauging locations along with the total measured flow, segment flow and infiltration flow rate. The following is a summary of the flow gauging results:

- A significant flow rate (13,850 gpd or 1,814 gpd/in-mi) was calculated in the pipe segment along Middle Road South (SMH 12-001 to SMH 12-004)
- A significant flow rate (1,050 gpd or 7,700 gpd/in-mi) was calculated in the pipe segment along US 7 (SMH 12-004 to SMH 12-005).
- A significant flow rate (24,038 gpd or 3,526 gpd/in-mi) was calculated in the pipe segment along US 7 (SMH 12-004 to an unmarked SMH on the west side of US 7 across from Cady Road)
- A significant flow rate (2,270 gpd or 8,813 gpd/in-mi) was calculated in the pipe segment along US 7 (SMH 12-005 to SMH 12-006)
- A significant flow rate (3,839 gpd or 5,067 gpd/in-mi) was calculated in the pipe segment along Cady Road (Unmarked SMH on the west side of US 7 across from Cady Road to SMR 12-008)
- Minimal flow was observed in the follow pipe segments and these segments were excluded from further evaluation:
 - o Foote Street between SMH 12-005 and SMH 12-007
 - o Cady Road between SMH 12-008 and SMH 12-010
 - Cady Road between SMH 12-008 and SMH 07-67

o US 7 between unmarked SMH on west side across from Cady Road and SMH 07-66

4.2.6 Summary of 1st Night and Recommendations for 2nd Night

High School Pump Station (PS#1) Service Area

For the High School Pump Station (PS#1) service area, the 1st night of flow gauging resulted in large areas of excessive infiltration as shown on Figure No. 3. It was recommended that a 2nd night of flow gauging be conducted in the PS#1 service area to breakdown the following two (2) large areas into smaller pipe segments:

- Buttolph Drive between SMH 0659 and Swanage Street/Woodland Park.
- Monroe Street between SMH 0693 and SMH 0655.

The following areas of excessive infiltration are relatively small and did not to be broken down further:

- 230 l.f. of sewerline on Buttolph Drive between SMH 0655 and SMH 0659.
- 960 l.f. of sewerline on Charles Avenue between SMH 0673 and 0677
- 385 I.f. of sewerline near the High School Pump Station from SMH 0681 to SMH 0682.
- 835 l.f. of sewerline near the High School Pump Station from SMH 0682 to SMH 0673.

Because these areas of excessive infiltration in the PS#1 service area are relatively small in area, they were directly recommended for Phase II sewer system evaluation (TV and manhole Inspections) without the need to break them down further during the 2nd night. Therefore, the 2nd night of flow gauging was not recommended in these areas of the PS#1 service area.

Seminary Pump Station (PS#6) Service Area

For the Seminary Pump Station (PS#6) service area, the 1st night of flow gauging resulted in some large areas of excessive infiltration as shown on Figure No. 4. It was recommended that a 2nd night of flow gauging be conducted in the PS#6 service area to breakdown the following three (3) large areas into smaller pipe segments:

- Cross country sewerline between Seminary Street Extension (SMH 06-021) and SMH 06-028 where Peterson Terrace enters the sewerline.
- The sewerline from SMH 06-001 near the pump station going south east along Forbes Circle, East Road, and Evergreen Lane to the ends of the sewerlines.
- The sewerline along Washington Street from MH 06-039 at the intersection of the northern leg of Colonial Drive and Peterson Terrace south to the intersection of the southern leg of Colonial Drive including the southern leg of colonial Drive.

The following areas of excessive infiltration are relatively small and did not to be broken down further:

- 85 l.f. of sewerline on Seminary Street from SMH 06-014 to SMH 06-021.
- 1,600 l.f. of sewerline on Seminary Street from SMH 06-14 to the end of the sewerline at Battell Woods Condominiums.
- 830 l.f. of sewerline on northern leg of Colonial Drive from the intersection of Washington Street at SMH 06-039 to the end of the sewerline.
- 117 l.f. of sewerline on Washington Street from SMH 06-039 SMH 06-040.

Because these areas of excessive infiltration in the PS#6 service area are relatively small in area, they were directly recommended for Phase II sewer system evaluation (TV and manhole Inspections) without the need to break them down further during the 2nd night. Therefore, the 2nd night of flow gauging was not recommended in these areas of the PS#6 service area.

Weybridge Pump Station (PS#9) Service Area

For the Weybridge Pump Station (PS#9) service area, the 1st night of flow gauging results identified three (3) relatively small areas of sewerline segments with excessive infiltration as shown on Figure No. 5 including:

- 790 l.f. along Weybridge Street (SMH 09-013 to SMH 09-015) from the intersection of Morning Drive southeast to the end of the sewer.
- 770 l.f. of cross country sewer (SMH 09-003 to SMH 09-002W) from PS#9 toward Weybridge.
- 635 l.f. of sewerline (SMH 09-011 to SMH 09-022) behind the homes along the west side of Weybridge Street from Pulp Mill Road to Morningside Drive.

Because the areas of excessive infiltration in the PS#9 service area are relatively small in area, they were directly recommended for Phase II sewer system evaluation (TV and manhole Inspections) without the need to break them down further during the 2nd night. Therefore, the 2nd night of flow gauging was not recommended in the PS#9 service area.

Halladay Pump Station (PS#12) Service Area

For the Halladay Pump Station (PS#12) service area, the 1st night of flow gauging resulted in two (2) large areas of excessive infiltration as shown on Figure No. 6 including:

- 2,240 l.f. of sewerline on Middle Road South between SMH 12-001 and SMH 12-003.
- 2,000 l.f. of sewerline on US Route 7/Middle Road South between SMH 12-004 and an unnumbered manhole at the intersection of US 7 and Cady Road.

There are no manholes to break these areas down further, so a 2nd night of flow gauging was not recommended in these areas. These areas are recommended for Phase II sewer system evaluation (TV inspection).

The following areas of excessive infiltration are relatively small and did not need to be broken down further during the 2nd night:

- 90 l.f. of sewerline on US Route 7/Middle Road South between SMH 12-004 and SMH 12-005.
- 170 I.f. of sewerline on US Route 7 and Foote Street between SMH 12-005 and SMH 12-006.
- 500 I.f. of sewerline On US Route 7 and Cady Road between an unnumbered manhole and SMH 12-008.

Because these areas of excessive infiltration in the PS#12 service area are relatively small in area, they were directly recommended for Phase II sewer system evaluation (TV and manhole Inspections) without the need to break them down further during the 2nd night. Therefore, the 2nd night of flow gauging was not recommended in these areas of the PS#12 service area.

4.3 2nd Night on May 1, 2013

4.3.1 General

Using the infiltration flows estimated from the 1st night, locations for gauging were selected within PS#1 and PS#6 service areas for the 2nd night on May 1, 2013. Weather and flow conditions had changed drastically since April 11, 2013. All seasonal thaws had passed and conditions were drier than typically experienced during this time of year. The Town of Middlebury's decided to complete the night-time flow gauging during the spring of 2013, in order to move forward into Phase II of the Sewer System Evaluation Study.

Flow gauging for this night was performed at closer intervals to better assess specific locations and pipe segments. Nathan Pion from Aldrich + Elliott, PC entered manhole structures and measured the actual flows using v-notch weirs temporarily installed in the inlet pipes. Assistance with confined space entry was provided by Paul Lengyel and Dean Rheaume of the Town of Middlebury. The flow was measured at approximately 12 structures on the 2nd night as shown on Figure No. 7 and 8 in Appendix A. It was evident during the second night that the seasonal high groundwater had rescinded. Flows experienced during the 2nd night of flow gauging in the same locations were significantly lower than the 1st night. Flow gauging was performed in the High School Pump Station and Pump Station #6 service areas. This information is summarized in Appendix D and was used to estimate the infiltration from specific pipe segments.

4.3.2 High School Pump Station (PS #1)

Figure No. 7 provides a map of the gauging locations along with the total measured flow, segment flow and infiltration flow rate. The following is a summary of the flow gauging results:

- A significant flow rate (1,618 gpd or 4,643 gpd/in-mi) was calculated in the pipe segment along Buttolph Drive (SMH 0655 to SMH 0659)
- A significant flow rate (7,252 gpd or 14,504 gpd/in-mi) was calculated in the pipe segment along Buttolph Drive (SMH 0659 to SMH 0701)

- A significant flow rate (10,530 gpd to SMH 13,934 gpd/in-mi) was calculated in the pipe segment that flows cross country from Buttolph Drive to US 7 (SMH 0693 to SMH 0655).
- Minimal flow rate was observed in the following pipe segments and these segments were excluded from further evaluation:
 - Buttolph Drive between SMH 0655 and the end of Monroe Street
 - Buttolph Drive between SMH 0659 and SMH 0644
 - Swanage Court between SMH 0701 and SMH 0101
 - Swanage Court between SMH 0701 and SMH 0092
 - Cross Country between SMH 0690 and SMH 0655
 - Cross Country between SMH 0690 and SMH 0654
 - o Cross Country between SMH 0693 and Overbrook Drive.

4.3.3 Seminary Pump Station (PS #6)

Figure No. 8 provides a map of the gauging locations along with the total measured flow, segment flow and infiltration flow rate. The following is a summary of the flow gauging results:

- A significant flow rate (2,704 gpd or 1,785 gpd/in-mi) was calculated in the pipe segment along the cross country route to Seminary Street (SMH 06-025 to SMH 06-028)
- A significant flow rate (4,690 gpd or 7,459 gpd/in-mi) was calculated in the pipe segment along Washington Street (SMH 06-046 to SMH 06-052).
- Minimal flow rate was observed in the following pipe segments and these segments were excluded from further evaluation:
 - Seminary Street Extension between SMH 06-003 and SMH 06-005
 - Valley View Drive between SMH 06-005 and Seminary Street.
 - Valley View Drive between SMH 06-005 and East Road
 - Valley View Drive between SMH 06-005 and SMH 06-006
 - Evergreen Lane between SMH 06-007 and SMH 06-011
 - o Evergreen Lane between SMH 06-007 and SMH 06-013
 - o Cross Country Route between SMH 06-028 and SMH 06-029
 - Cross Country Route between SMH 06-028 and SMH 06-039
 - Washington Street between SMH 06-039 and SMH 06-048
 - Washington Street between SMH 06-039 and SMH 06-046
 - Washington Street between SMH 06-046 and SMH 06-047

4.4 3rd Night on June 6, 2013

4.4.1 General

The 3rd night of flow gauging was performed on the evening of June 6, 2013 from the hours of 11:00 pm through 4:00 am to further define areas of excessive infiltration from the 2nd night of flow gauging. Nathan Pion from Aldrich + Elliott, PC entered manhole structures and measured the actual flows using v-notch weirs installed in the inlet pipelines. Assistance with confined space entry was provided by Paul Lengyel and Victor LaBerge of the Town of Middlebury. The flow was measured at approximately 16 manholes. The gauging locations are shown on Figure No. 9 thru 12

in Appendix A. The measured flow for each location along with the segment flow and infiltration rate per segment is summarized in Appendix E for the 3rd night.

4.4.2 High School Pump Station (PS #1)

Figure No. 9 provides a map of the gauging locations along with the total measured flow, segment flow and infiltration flow rate. The following is a summary of the flow gauging results:

- A significant flow rate (10,428 gpd or 19,118 gpd/in-mi) was calculated in the pipe segment between Swanage Court and Harrow Way (SMH 0701 to SMH 0092).
- A significant flow rate (2,975 gpd or 2,206 gpd/in-mi) was calculated in the pipe segment along Swanage Court (SMH 0701 to SMH 0095).
- Minimal flow was observed in the following pipe segments and these segments were excluded from further evaluation:
 - Harrow Way between SMH 0092 and SMH 0094.
 - o Harrow Way between SMH 0092 to the end of Heritage Circle.
 - Woodland Park between SMH 0095 and SMH 0101.

4.4.3 Seminary Pump Station (PS #6)

Figure No. 10 provides a map of the gauging locations along with the total measured flow, segment flow and infiltration flow rate. The following is a summary of the flow gauging results:

- A significant flow rate (11,520 gpd or 2,765 gpd/in-mi) was calculated in the pipe segment along Washington Street Cross Country (SMH 06-028 to the end of Washington Street).
 - o Areas of excessive infiltration upstream had been determined in the 2nd night.
- A significant flow rate (1,326 gpd or 2,188 gpd/in-mi) was calculated in the cross country pipe segment along Washington Street Cross Country.
- Minimal flow was observed in the following pipe segments and these segments were excluded from further evaluation:
 - Seminary Street Extension between SMH 06-001 and SMH 06-005.
 - o Valley View Drive between SMH 06-005 and Seminary Street.
 - Valley View Drive between SMH 06-005 and East Road.
 - o Valley View Drive between SMH 06-005 and SMH 06-007.
 - Evergreen Lane between SMH 06-007 and SMH 06-013.
 - Evergreen Lane between SMH 06-007 and SMH 06-011.
 - Seminary Street Cross Country between SMH 06-021 and SMH 06-026.
 - o Seminary Street Extension between SMH 06-021 and SMH 06-023.
 - o Washington Street Cross Country between SMH 06-026 and SMH 06-028.
 - Washington Street Cross Country between SMH 06-026 and Washington Street.
 - o Peterson Terrace between SMH 06-030 and SMH 06-036.
 - Peterson Terrace between SMH 06-030 and SMH 05-029.

4.4.4 Weybridge Pump Station (PS #9)

Figure No. 11 provides a map of the gauging locations along with the total measured flow, segment flow and infiltration flow rate. The following is a summary of the flow gauging results:

- Minimal flow was observed in the following pipe segments and these segments were excluded from further evaluation:
 - o Pulp Mill Bridge Road between 09-001W to the end of Pulp Mill Bridge Road.

4.4.5 Halladay Pump Station (PS #12)

Figure No. 12 provides a map of the gauging locations along with the total measured flow, segment flow and infiltration flow rate. The following is a summary of the flow gauging results:

- A significant flow rate (16,250 gpd or 6,600 gpd/in-mi) was calculated in the pipe segment along Middle Road South (SMH 12-001 to Unmarked #1, which is located at the intersection of Middle Road South and Halladay Road).
- A significant flow rate (14,400 gpd or 2,289 gpd/in-mi) was calculated in the pipe segment along US 7 (Unmarked #3, which is located at the intersection of US 7 and Cady Road, to the end of US 7 South).
- Minimal flow was observed in the follow pipe segments and these segments were excluded from further evaluation:
 - Middle Road South between Unmarked #1, which is located at the intersection of Middle Road South and Halladay Road, and SMH 12-004.
 - o US 7 between SMH 12-004 and SMH 12-005.
 - US 7 between SMH 12-004 and Unmarked #2, which is located at the intersection of US 7 and a private road that connects to Lower Foote Street.
 - US 7 between Unmarked #2 and Unmarked #3, which is located at the intersection of US 7 and Cady Road, to the end of US 7 South.
 - US 7 between Unmarked #3 and end of Cady Road.

4.5 Summary of Areas of Excessive Infiltration

The estimated infiltration flows from the 1st, 2nd, and 3rd night of flow gauging were used to prioritize areas with excessive infiltration. In Table 4.1, these areas are listed by priority with the unit flow and location. Several areas are identified with excessive flows. In some cases, the excessive flow is located at the manholes, but in other locations the flow is contributed from the pipelines, or sewer services. This information can used to determine the need for further evaluation of specific locations and pipe segments under a Phase II investigation. This work could include additional flow gauging, television inspections, or other investigative methods. Any unit flow greater than 1,500 gal/day/in-mile is considered excessive. For new construction, an allowance of 300 gal/day/in-mile is assumed.

Table 4.1
Summary of Areas with Excessive Infiltration

			Pipe	Segment Infiltration	
Priority	Service Areas/	Segment Location	Length	Flow	Unit Flow
Ranking	Street		(feet)	(gpd)	(gpd/in/mi)
1	PS#9- Weybridge St	09-013 / 09-015	400	16,280	12,158
2	PS#1 - Woodland Park	0701 / 0092	360	10,428	19,118
3	PS#9- Cross Country	09-003 / 09-001W	635	2,975	2,550
4	PS#1- Monroe St. CC	0693 / 0690	590	10,530	13,934
5	PS#12- Middle Rd S	12-001 / Unmarked #1	650	16,250	6,600
6	PS#6- Seminary St. Ext.	06-021 / 06-028			
	Cross Country		1,326	12,782	6,362
7	PS#6- Washington St.	06-040 / 06-039	117	5,798	32,707
8	PS#1- Buttolph Dr.	0659 / 0701	330	7,252	14,504
9	PS#6- Seminary St. Ext.	06-014 / 06-021	85	1,633	12,680
10	PS#1- HS Area	0682 / 0681	385	4,690	8,040
11	PS#6- Colonial Drive S.	06-046 / 06-052	415	4,690	7,459
12	PS#12- RT 7/Cady Rd.	Unnumbered / 12-008	500	3,839	5,067
13	PS#1- HS Area	0682 / 0673	835	6,580	4,657
14	PS#1- Charles Ave	0673 / 0677	960	3,090	2,450
15	PS#12- RT 7/Foote St	12-005 / 12-006	170	2,270	8,813
16	PS#1 – Buttolph Drive	0655 / 0659	230	1,755	5,036
17	PS#12- RT 7/Middle Rd.	12-004 / 12-005	90	1,050	7,700
18	PS#6- Colonial Drive	06-039 / 06-051	830	3,689	2,933
19	PS#12- Middle Rd S	Unmarked #3 / End of			
		US 7	2,520	14,400	2,289
20	PS#1 – Woodland Park	0701 / 0095	890	2,975	2,206
21	PS#6- Peterson Terr.	06-028 / 06-029	540	1,326	2,188
22	PS#6- Seminary St. Ext.	06-014 / 06-024	1,600	4,690	1,935
23	PS#9- Weybridge St	09-011 / 09-022	635	1,458	1,515
		Totals	15,093		100

SECTION 5 EXCHANGE STREET MANHOLE INSPECTIONS

SECTION 5 EXCHANGE STREET MANHOLE INSPECTIONS

5.1 GENERAL

A day of manhole inspections was performed on December 20, 2012 for the manholes along the Exchange Street trunk sewer from the Cabot connection to the intersection of Seymour Street. The manhole inspections were performed during favorable weather conditions to observe and document the physical condition of the manholes. Kevin Camara of Aldrich + Elliott, PC performed the inspections with the assistance of Paul Lengyel and Dan Rheaume of the Town of Middlebury. A total of fourteen (14) structures were observed. Figure No. 9 in Appendix A shows the location of area and manholes inspected.

5.2 RESULTS OF MANHOLE INSPECTIONS

For each manhole inspected, a "Manhole Observation Sheet" was prepared in the field. Copies of the Manhole Observation Sheets are provided in Appendix F. The results of the manhole inspections are summarized in Table 5.1.

Table 5.1

Results of Manhole Inspections

Exchange Street Trunk Sewer

		mange outcet	1
Manhole		Infiltration	
ID	Location	Observed	Observations
0395	Edge RR/Cross Country	Yes	 Significant bacterial slime growth on walls. Minor deterioration and spalling of concrete walls. Minor roots on wall. 4" of grit in invert. Infiltration (5 gpm) 8" inlet pipe from west and manhole joint. Hole in concrete wall.
0398	Edge RR/Cross Country Champlain PS CC	No	 No invert. Cleanout in center of 14" PE pipe does not provide good access for maintenance/cleaning. Minor deterioration and spalling of concrete walls.

Table 5.1 Results of Manhole Inspections Exchange Street Trunk Sewer (Continued)

Manhole	(Continued)						
ID	Location	Infiltration Observed	Observations				
0399	Edge RR/Cross Country	Yes	 14" PE slip line inlet pipe is pushed in too far which is restricting flow. 14" PE slip line inlet pipe is pinched to ½ dia. which is also restricting flow. Significant bacterial slime growth on walls. Minor deterioration and spalling of concrete walls. Minor roots on wall. Grade stakes and rags stuck in outlet pipe. Infiltration (3 gpm) at inlet pipe connection. 				
0400	Edge RR/Cross Country US 7 CC	Yes	 14" PE slip line inlet pipe pushed in too far which is restricting flow. Significant bacterial slime growth on walls. Minor deterioration and spalling of concrete walls. Cracks around MH riser joints. Minor roots on wall. Grade stakes and rags stuck in outlet pipe. Minor infiltration (weeps) at riser joints. 				
0403	Edge RR/Cross Country	No	 No invert. Cleanout with valve in 14" PE pipe does not provide good access for maintenance/cleaning. Valve not working. Minor deterioration and spalling of concrete walls. 				
0405	Edge RR/Cross Country	No	 Frame is pushed over 6" and mortar is cracked. No invert. Cleanout in center of 14" PE pipe does not provide good access for maintenance/cleaning. Minor deterioration and spalling of concrete walls. 				
0406	Edge RR/Cross Country	Yes	 No invert. Cleanout in center of 14" PE pipe does not provide good access for maintenance/cleaning. Minor deterioration and spalling of concrete walls. Minor infiltration (weeps) at riser joints. 				

Table 5.1 Results of Manhole Inspections Exchange Street Trunk Sewer (Continued)

Manhole		Infiltration	
ID	Location	Observed	Observations
0407	Edge RR/Cross Country	Yes	 Cut open top portion of 14" PE pipe does not provide good access for maintenance/cleaning. Minor deterioration and spalling of concrete walls. Minor infiltration (weeps) at riser joints.
0420	Edge RR/Cross Country	Yes	 14" PE slip line outlet pipe pushed in too far which is restricting flow. Minor bacterial slime growth on walls. Minor deterioration and spalling of concrete walls. Minor infiltration (weeps) at riser joints.
0421	Edge RR/Cross Country	Yes	 Minor bacterial slime growth on walls. Minor deterioration and spalling of concrete walls. Minor root growth on walls. Significant infiltration (10 gpm) between outer pipe and slip line pipe. Invert 1/4 full of grit and needs to be cleaned.
0759	Edge RR/Cross Country	No	 Manhole wall covered in bacterial slime growth. Minor spalling of concrete walls. Invert 1/2 full of grit and needs to be cleaned.
0759A	Edge RR/Cross Country	Yes	 Manhole wall covered in bacterial slime growth. Minor spalling of concrete walls. Significant root growth on walls. Invert and shelf deteriorated, concrete spalling and significant slime growth. Infiltration (<1 gpm) at inlet 12" pipe connection.

Table 5.1 Results of Manhole Inspections Exchange Street Trunk Sewer (Continued)

Manhole		Infiltration	
ID	Location	Observed	Observations
0780	Edge RR/Cross Country	Yes	 Manhole wall covered in bacterial slime growth. Invert deteriorated, concrete spalling and significant slime growth. Minor infiltration (weeping) at inlet and outlet pipe connections and base/riser joint.
0780A	Edge RR/Cross Country	Yes	 Manhole wall covered in bacterial slime growth. Invert deteriorated, concrete spalling and significant slime growth. Hole in manhole wall. Infiltration (5 gpm) through hole in wall and under frame

SECTION 6 MAIN PUMP STATION CAPACITY EVALUATION

SECTION 6 MAIN PUMP STATION CAPACITY EVALUATION

6.1 GENERAL

The Main Pump Station is located at the end of Lucius Shaw Lane at the site of the former WWTF. This pump station conveys the wastewater through a forcemain to the wastewater treatment facility (WWTF) located at the end of Industrial Avenue for treatment prior to discharge to the Otter Creek.

In 2010 the Town completed an upgrade to the Main Pump Station which added an expanded wet well and grit removal facilities to reduce overflows at the station to be in compliance with the State of Vermont CSO Control Policy and to reduce the amount of grit accumulating in the forcemain.

The pumps were originally designed to discharge up to 6.2 mgd with two (2) pumps running. The operators indicated that the 6.2 mgd was achieved during the first few years of operations, but a steady decrease was observed after. This section studies the actual capacity of the pumps and alternatives to regain the existing capacity.

The forcemain is approximately 11,772 feet long and consists of 172 l.f. of 16" DI, 600 l.f. of 18" DI, and 11,000 l.f. of 18" PVC pipe. There are six (6) high points with air release/vacuum valves. There are five (5) low points which have blow off valves.

The pumps are variable speed 150 hp vertical centrifugal pumps. Each pump is designed for 2,250 gpm at 157 ft TDH. There is a flow metering manhole near the pump station with a magnetic flow meter. There are two (2) wet wells. One (1) with 15,000 gallon capacity and the other with 180,000 gallons of capacity.

6.2 PUMP CAPACITY TESTING

6.2.1 1st Round - August 29, 2012

Pump drawdown tests were performed at the Middlebury Main Pump Station on August 29, 2012 to document the pumping capacity of the existing pumps. Kevin Camara from A+E and Bob Wells and Jerry Skira from the Town were on-site to monitor and document the results of the pump test.

The actual pumping rates were field verified for each individual pump, two (2) pumps running with the flow meter manhole bypassed, and all three (3) pumps running. The pump(s) were each run at high speed (60 hz) to estimate the maximum capacity. The original wet well along with the surcharging in two (2) manholes and the 24" pipeline to the new wet well were used for the drawdown while incoming flow was stored in the new wet well. This test was performed so that the incoming flow did not impact the drawdown test results. Table 6.1 provides a summary of the testing results.

Table 6.1 Pump Drawdown Testing Result Summary

	Drawdown Result		Flow Meter Reading		Flowmeter
Description	GPM	MGD	GPM	MGD	Percent Error
Pump 1- High Speed	2,687	3.87	2,166	3.12	-20.9%
Pump 2- High Speed	2,544	3.66	2,126	3.06	-16.4%
Pump 3- High Speed	2,516	3.62	2,122	3.06	-15.6%
Pump 1 & 2- High Speed	3,551	5.11	3,000	4.32	-15.5%
Pump 1 & 3- High Speed	3,564	5.13	3,060	4.41	-14.1%
Pump 1 & 3- High Speed w/	3,735	5.38	-	-	-
Flow Meter Manhole Bypassed	·				
Pump 1, 2 & 3- High Speed	3,918	5.64	3,426	4.93	-12.5%

Sketches of the wet well are provided in Appendix G. Wet well drawdown volume calculations are provided in Appendix H. Pump Capacity calculations from the 1st round of drawdown testing are provided in Appendix I.

6.2.2 2nd Round- October 11, 2012

A second round of pump drawdown and forcemain testing was performed at the Middlebury Main Pump Station on October 11, 2012 to document the operating pressures and evaluate the flows compared to the original pump curves. Kevin Camara from A+E and Bob Wells and Jerry Skira from the Town were on-site to monitor and document the results of the pump test.

The static pressure of the forcemain was measured to be 30 psi (69 feet). With one (1) pump running at high speed, the drawdown calculated flow rate was 2,479 gpm and the system pressure was measured to be 55 psi (127 feet). The magnetic flow meter was reading 2,122 gpm which was off by approximately -14.4%. When plotting the calculated flow rate and system pressure on the pump curve, the pump appears to be pumping well below what it should be. As shown on the attached pump curve, at a Total Dynamic Head (TDH) of 127 feet, the pump should be pumping approximately 2,800 gpd. See Appendix J for the 2nd round pump drawdown calculations and the pump system curve.

Forcemain Headloss

The TDH for the system was estimated based on the measured static pressure and the calculated friction head loss. The friction head loss was calculated based on the measured flow rate, pipe diameters, pipe lengths, losses through fittings, and the estimated C factor for the types of pipe installed and current age. The expected C factor for twelve (12) year old pipe is 140 for PVC and 120 for ductile iron.

The estimated TDH based on calculated conditions and estimated C factors is 105 feet for 2,479 gpm. The calculated TDH is lower than the actual measured system pressure of 127 feet. Therefore, there is it is possible that something in the forcemain is causing a higher system

With the flow metering manhole bypassed, there is no flow meter reading available.

pressure. We then lowered the C Factor to match the measured system pressure of 127 feet; the resulting C factors are 111 for PVC and 91 for ductile iron. See Appendix K for forcemain headloss and system curve calculations.

These are very low numbers for this age and type of pipe which suggests that accumulated grit in the forcemain may be causing the higher system pressure. It was recommended that the Town pursue pricing for pigging of the forcemain.

6.3 FORCEMAIN PIGGING

Force main cleaning typically includes running a manufactured polypropylene "pigging" device through the line and long force mains are typically equipped with "pig" insertion and retrieval stations. The Main Pump Station forcemain does not have a pig insertion or retrieval station.

The Town contacted Richard Berthiaume, General Manager of Eastern Pipe Services to review the Town's Main Pump Station and forcemain and provide technical recommendations and budgetary pricing for pigging the forcemain using standard poly pigging operations. A site visit was conducted on January 16, 2013 to look at the pump station, forcemain access points and the receiving facilities at the WWTF.

It was determined that the several existing conditions limit the ability to pig the forcemain using standard poly pig techniques without the high likelihood that the pig would get stuck or that there would be enough storage capacity for pigging operations. These limitations include:

- No pig insertion or retrieval stations.
- Two (2) 90° bends at the WWTF.
- Two (2) wyes in the forcemain with straight runs against closed valves.
- Change in pipe size from 16" to 18".
- Volume of fluid needed for pigging vs. the volume of wet well storage available before overflow.

It was determined that pigging the forcemain by standard poly pig techniques was not viable for the Town.

The Town then contacted Utility Service from Bow, NH to provide technical recommendations and pricing for ice pigging of the forcemain. Ice pigging is an innovative/alternative method of pigging forcemains. Ice pigging combines the operational advantages of flushing with the cleaning impact of soft pigging. The Ice Pig is a semi-solid that is pumped like a liquid and flows through changes in diameter, bends and fittings without blockage. Ice pigging has a minimum impact on operations. The ice pig is simply pumped into the system and either melts in the pipe or is recovered at the WWTF without excavation.

A site visit was conducted with Scott Kelley of Utility Service on February 8, 2013. A second site visit was conducted with Paul Treloar, Operations Manager of Utility Service on March 20, 2013. On March 26, 2013, Utility Service provided the Town with a cost of \$108,000 for pigging of the

forcemain using the ice pigging technology. On May 26, 2013, Utility Service provided the Town with per day cost for ice pigging which is \$36,000 for the 1st three (3) days and \$12,000 per day if operations are conducted or \$6,000 per day if cancelled early. See Appendix L for the cost proposal and technical information for ice pigging.

SECTION 7 RECOMMENDED PLAN

SECTION 7 RECOMMENDED PLAN

7.1 GENERAL

This section includes the recommendations for:

- Phase II Sewer System evaluation study areas
- Exchange Street trunk sewer manhole improvements
- Pigging of the Main Pump Station Forcemain

7.2 PHASE II SEWER SYSTEM EVALUATION STUDY AREAS

The results of the night-time flow gauging and Exchange Street trunk sewer manhole inspection were used to develop the recommendations for the Middlebury wastewater collection system to reduce infiltration/inflow. This section provides information on the recommended approach including:

- Phase II Sewer System Evaluation Study including areas of recommended internal TV inspection and manhole inspections.
- Areas of recommended manhole rehabilitation.

It is recommended that a Phase II Sewer System Evaluation be performed on the pipeline segments which were identified as contributing excessive infiltration. A summary of these pipeline segments is provided in priority on Table 7.1.

Refer to the following figures for maps of the areas recommended for Phase II- Sewer System Evaluation:

- High School Pump Station (PS #1)- Figure No. 14
- Seminary Pump Station (PS #6)- Figure No. 15
- Weybridge Pump Station (PS #9)- Figure No. 16
- Halladay Pump Station (PS #12)- Figure No. 17

The Phase II evaluation includes light flushing and internal pipeline television inspection along with manhole inspections of all manholes along those segments. Recommending specific improvements at this time is difficult and not cost effective without gathering additional information and internally inspecting the pipelines in the areas of excessive infiltration. Complete pipe replacement in these areas is not always cost effective and may not be necessary in some pipe segments. Other types of pipeline rehabilitation methods used can be as effective in correcting the infiltration problems. Viewing the interior of each pipeline allows observation and analysis of each pipe joint to better identify the problem areas.

Flushing and television inspection is recommended on the pipelines which are contributing excessive infiltration listed in priority as shown in Table 7.1. There is approximately 15,500 lineal feet of gravity sewerline recommended for flushing and TV inspection. Flushing of the pipeline is

recommended prior to the TV inspection because clean pipelines greatly improve the quality of the video and the accuracy of the information. The light flushing and TV inspection typically costs approximately \$2.00 per linear foot of pipeline which would make the total cost of flushing and TV inspection approximately \$31,000.

Table 7.1

Areas Recommended for Phase II- Sewer System Evaluation Summary of Areas with

Excessive Infiltration

Priority	Service Areas/		Pipe Length
Ranking	Street	Segment Location	(feet)
1	PS#9- Weybridge St	09-013 / 09-015	400
2	PS#1 – Woodland Park	0701 / 0092	360
3	PS#9- Cross Country	09-003 / 09-001W	635
4	PS#1- Monroe St. CC	0693 / 0690	590
5	PS#12- Middle Rd S	12-001 / Unmarked #1	650
6	PS#6- Seminary St. Ext. CC	06-021 / 06-028	1,326
7	PS#6- Washington St.	06-040 / 06-039	117
8	PS#1- Buttolph Dr.	0659 / 0701	330
9	PS#6- Seminary St. Ext.	06-014 / 06-021	85
10	PS#1- HS Area	0682 / 0681	385
11	PS#6- Colonial Drive S.	06-046 / 06-052	415
12	PS#12- RT 7/Cady Rd.	Unnumbered / 12-008	500
13	PS#1- HS Area	0682 / 0673	835
14	PS#1- Charles Ave	0673 / 0677	960
15	PS#12- RT 7/Foote St	12-005 / 12-006	170
16	PS#1 – Buttolph Drive	0655 / 0659	230
17	PS#12- RT 7/Middle Rd.	12-004 / 12-005	90
18	PS#6- Colonial Drive	06-039 / 06-051	830
19	PS#12- Middle Rd S	Unmarked #3 / End of US 7	2,520
20	PS#1 – Woodland Park	0701 / 0095	890
21	PS#6- Peterson Terr.	06-028 / 06-029	540
22	PS#6- Seminary St. Ext.	06-014 / 06-024	1,600
23	PS#9- Weybridge St	09-011 / 09-022	635
		Totals	15,093

After completion of the TV inspection, the logs and tapes can be reviewed to perform a detailed assessment of the problem areas. Various improvements can then be evaluated for the deficient areas to perform a cost effective analysis of different types of repair and rehabilitation methods. Costs for the recommended improvements can then be provided.

After manhole inspections are completed of all the manholes in the areas of excessive infiltration listed in Table 7.1, a complete list of manhole deficiencies, recommended rehabilitation and costs can be performed.

7.3 EXCHANGE STREET TRUNK SEWER MANHOLE IMPROVEMENTS

Specific improvements for the Exchange Street trunk sewer manholes which were inspected are summarized in Table 7.2.

Table 7.2
Recommended Manhole Improvements
Exchange Street Trunk Sewer

Priority	Manhole	Location	Recommended Repairs	
	No.			
1	0421	Cross Country- Seymour Street/Railroad	 Chemical grout between outer pipe and slip line pipe to remove infiltration. Remove root growth on walls. Remove excessive grit from invert. 	
2	0780A	Edge RR	 Chemical grout hole in wall to remove infiltration. Remove, remortar and reset frame/cover to remove infiltration. 	
3	0395	Edge RR	 Chemical grout 8" inlet pipe and manhole joint to remove infiltration Chemical grout hole in wall to remove infiltration. Remove root growth on walls. 	
4	0399	Edge RR	 Cut back protruding 14" PE inlet pipe causing restricted flow. Chemical grout between outer pipe and slip line pipe to remove infiltration. Remove root growth on walls. Remove grade stakes and rags stuck in outlet pipe. 	
5	0400	Edge RR	Cut back protruding 14" PE inlet pipe causing restricted flow.	
6	0420	Edge RR	Cut back protruding 14" PE outlet pipe causing restricted flow.	

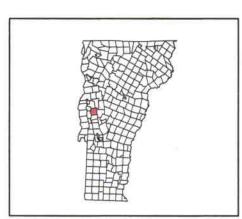
Table 7.2 Recommended Manhole Improvements Exchange Street Trunk Sewer (Continued)

Priority	Manhole	Location	Recommended Repairs
	No.		
7	0405	Edge RR	 Remove, remortar and reset frame/cover Remove straight through 14" PE pipe and cleanout. Provide an invert for proper maintenance.
8	0403	Edge RR	 Remove straight through 14" PE pipe and cleanout. Provide an invert for proper maintenance.
9	0406	Edge RR	 Remove straight through 14" PE pipe and cleanout. Provide an invert for proper maintenance.
10	0407	Edge RR	 Remove partially cut open straight through 14" PE pipe and cleanout. Provide an invert for proper maintenance.
11	0398	Edge RR	Remove straight through 14" PE pipe and cleanout. Provide an invert for proper maintenance.
12	0759A	Cross Country-RR to Cabot	 Chemical grout 12" inlet pipe to remove infiltration. Remove root growth on walls.
13	0759	Edge RR	Remove excessive grit from invert.

7.4 MAIN PUMPING STATION PUMPING CAPACITY

It is recommended that the Town clean 11,772 l.f. of forcemain serving the Main Pump Station by ice pigging. The cost of ice pigging is approximately \$180,000.

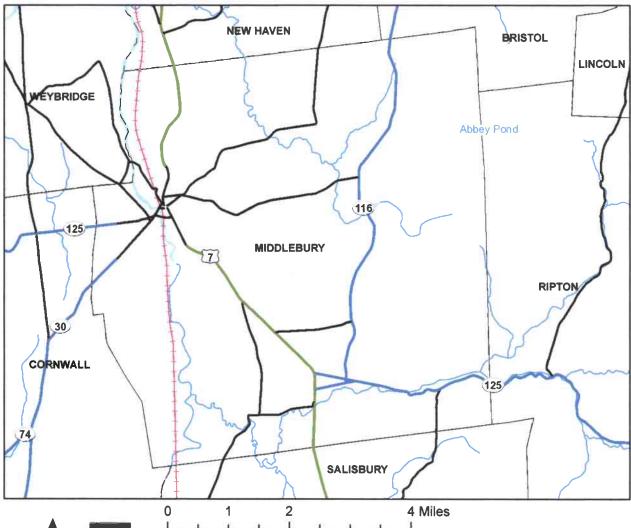
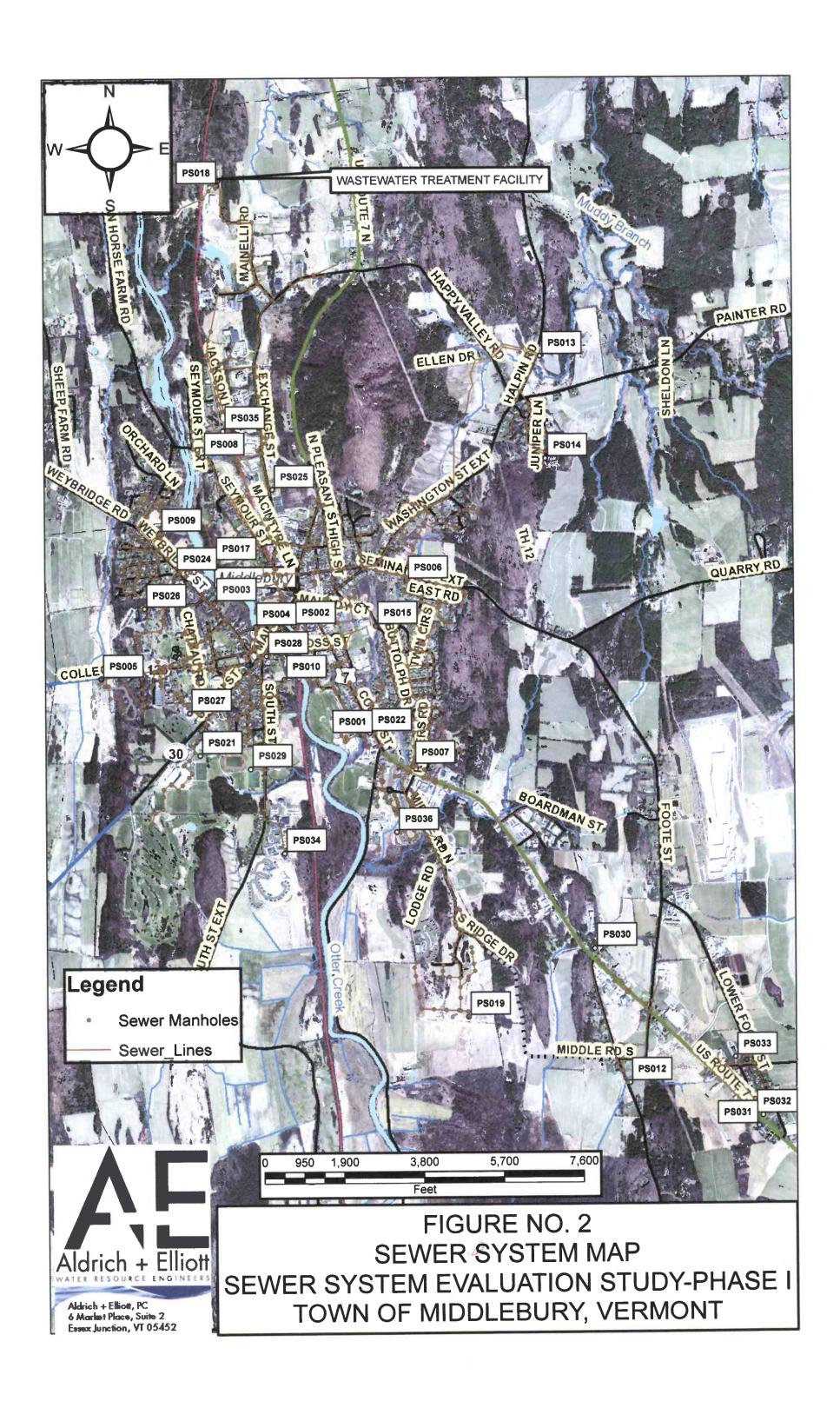
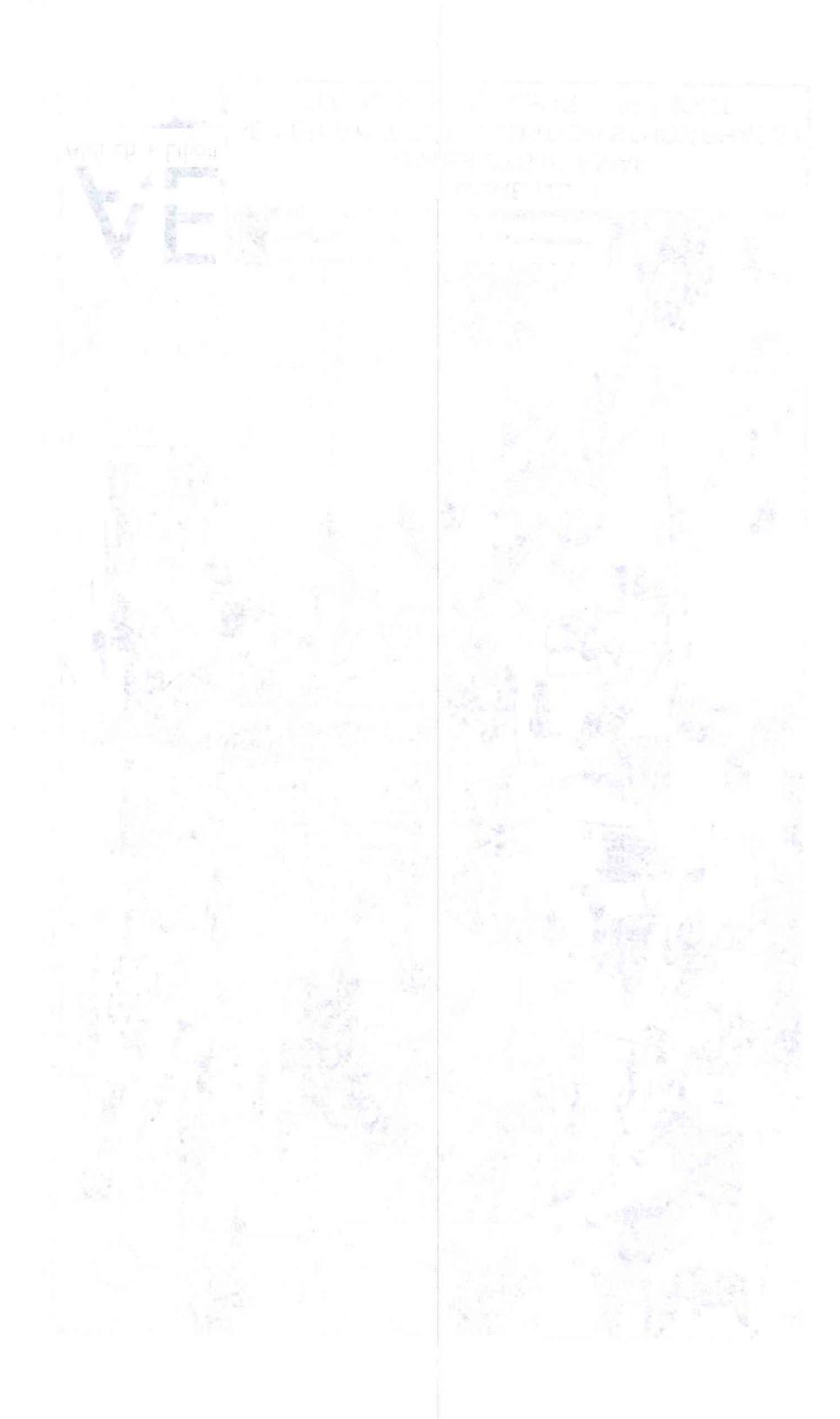
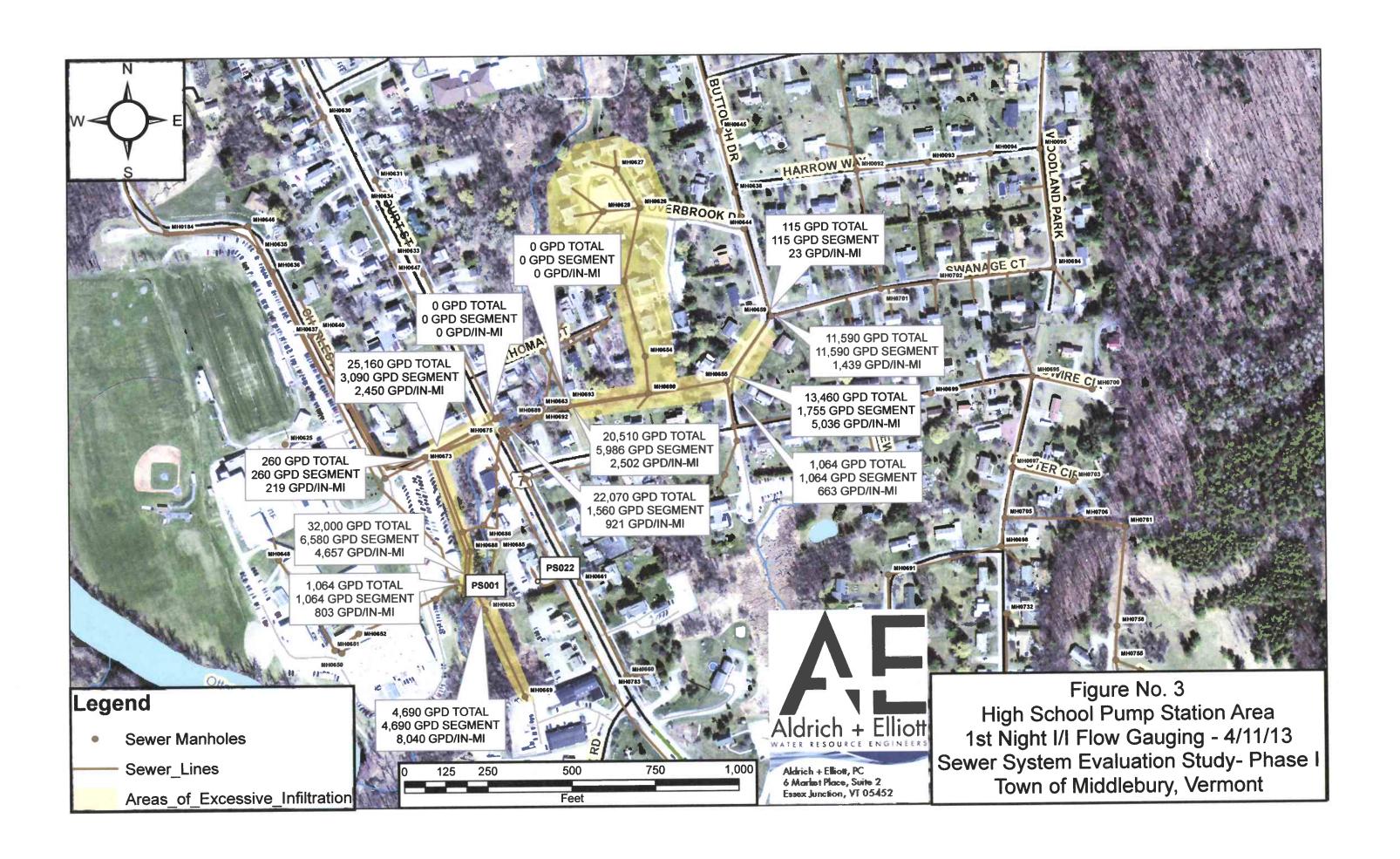
APPENDICES

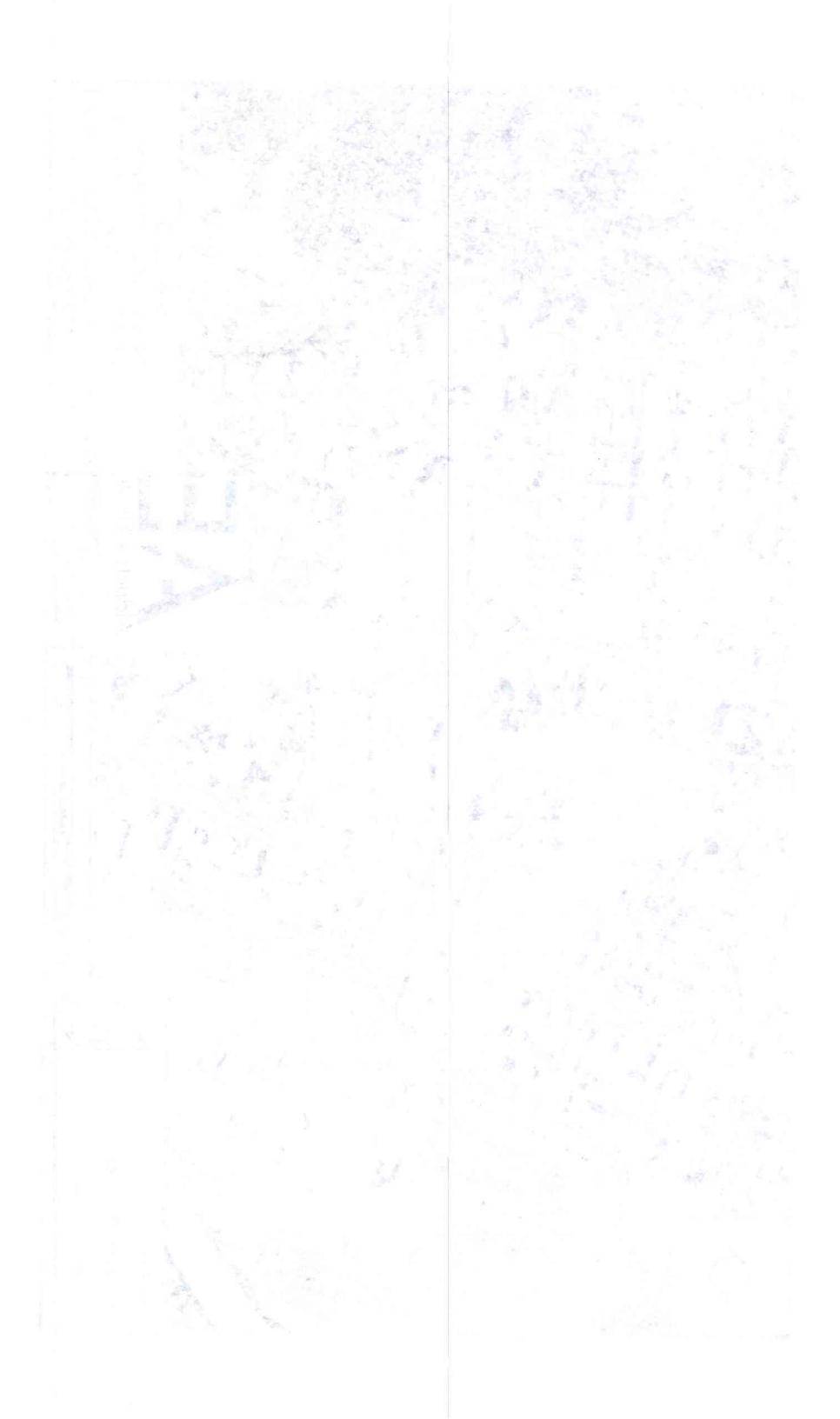


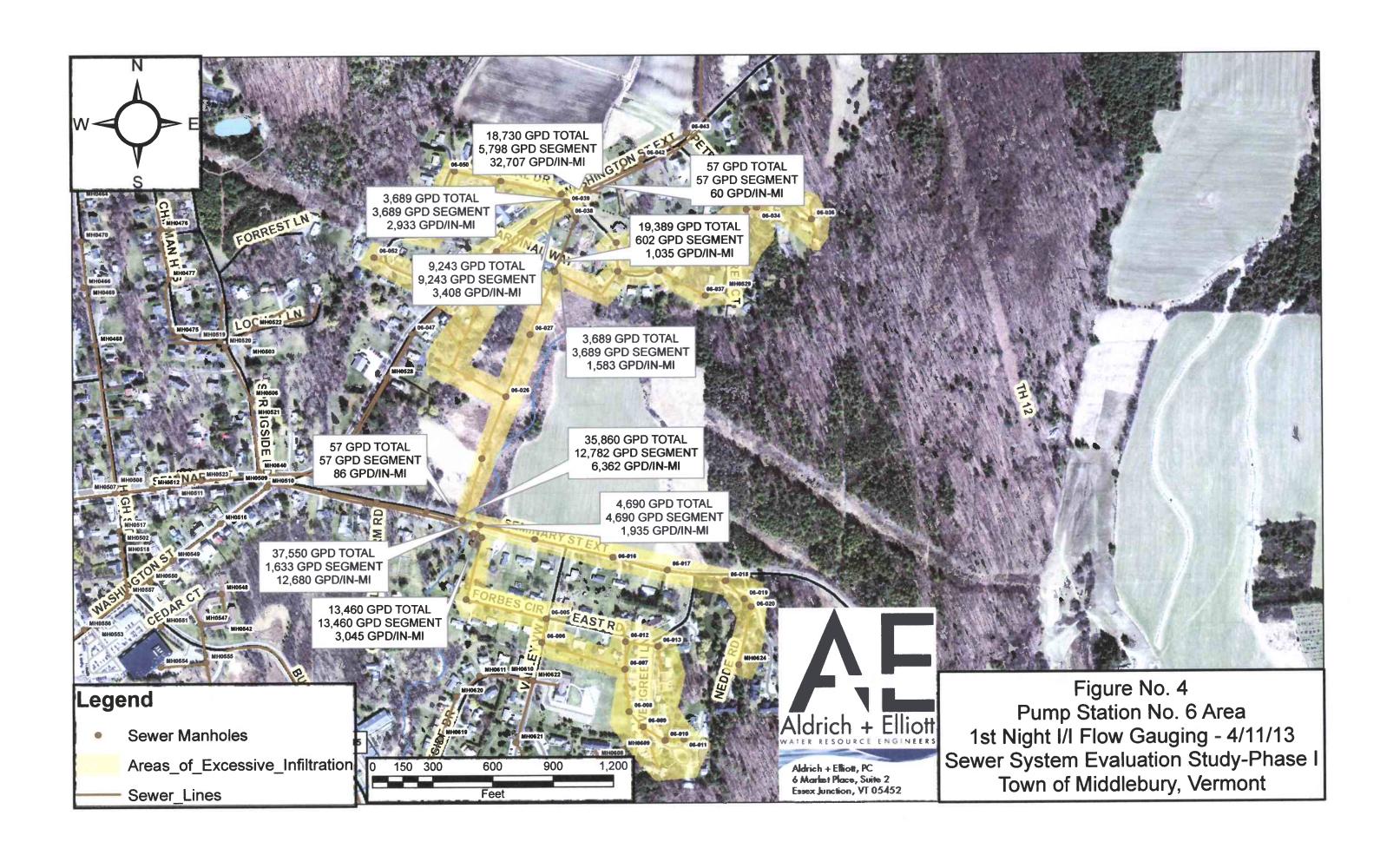
APPENDIX A FIGURES

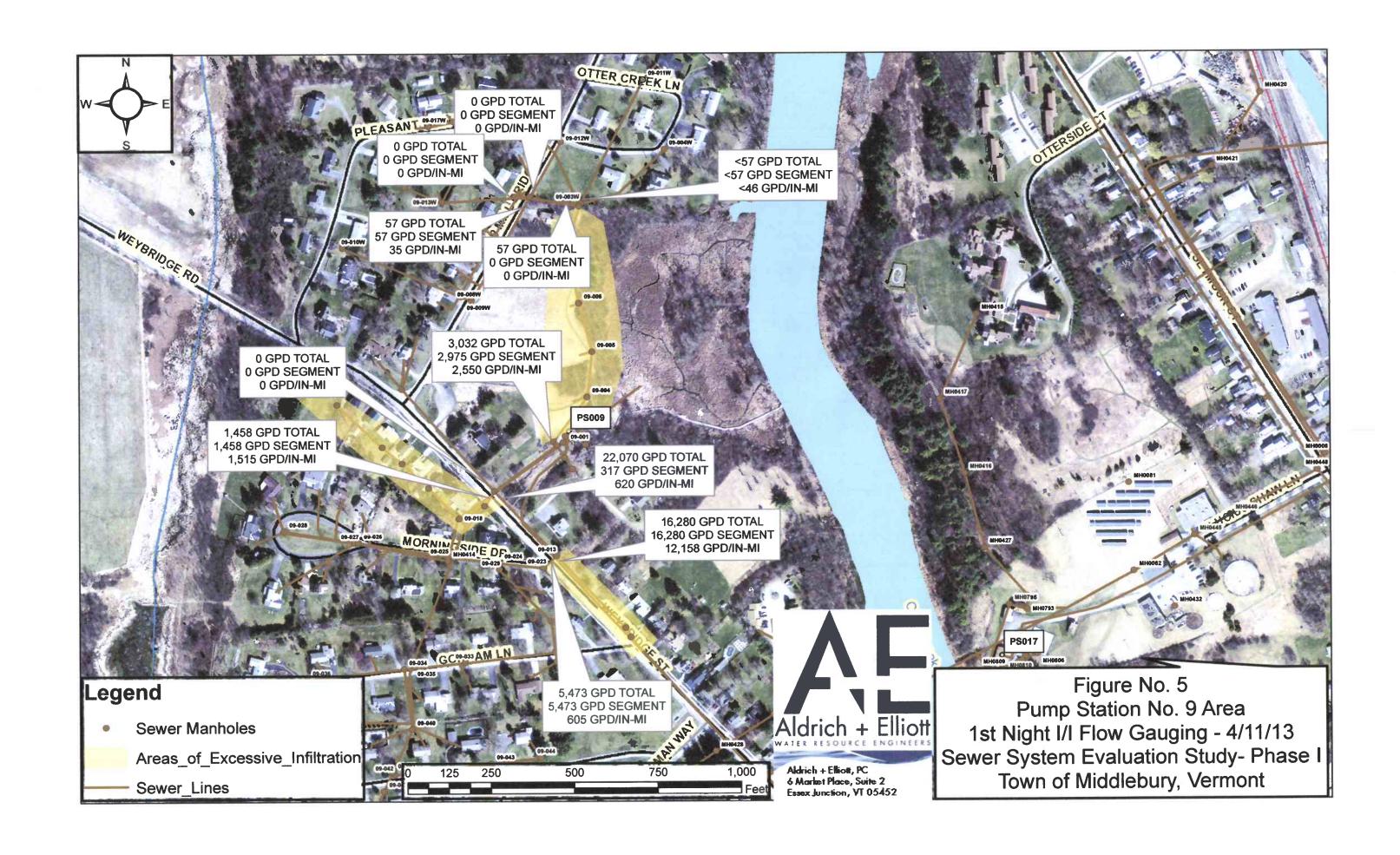
Legend

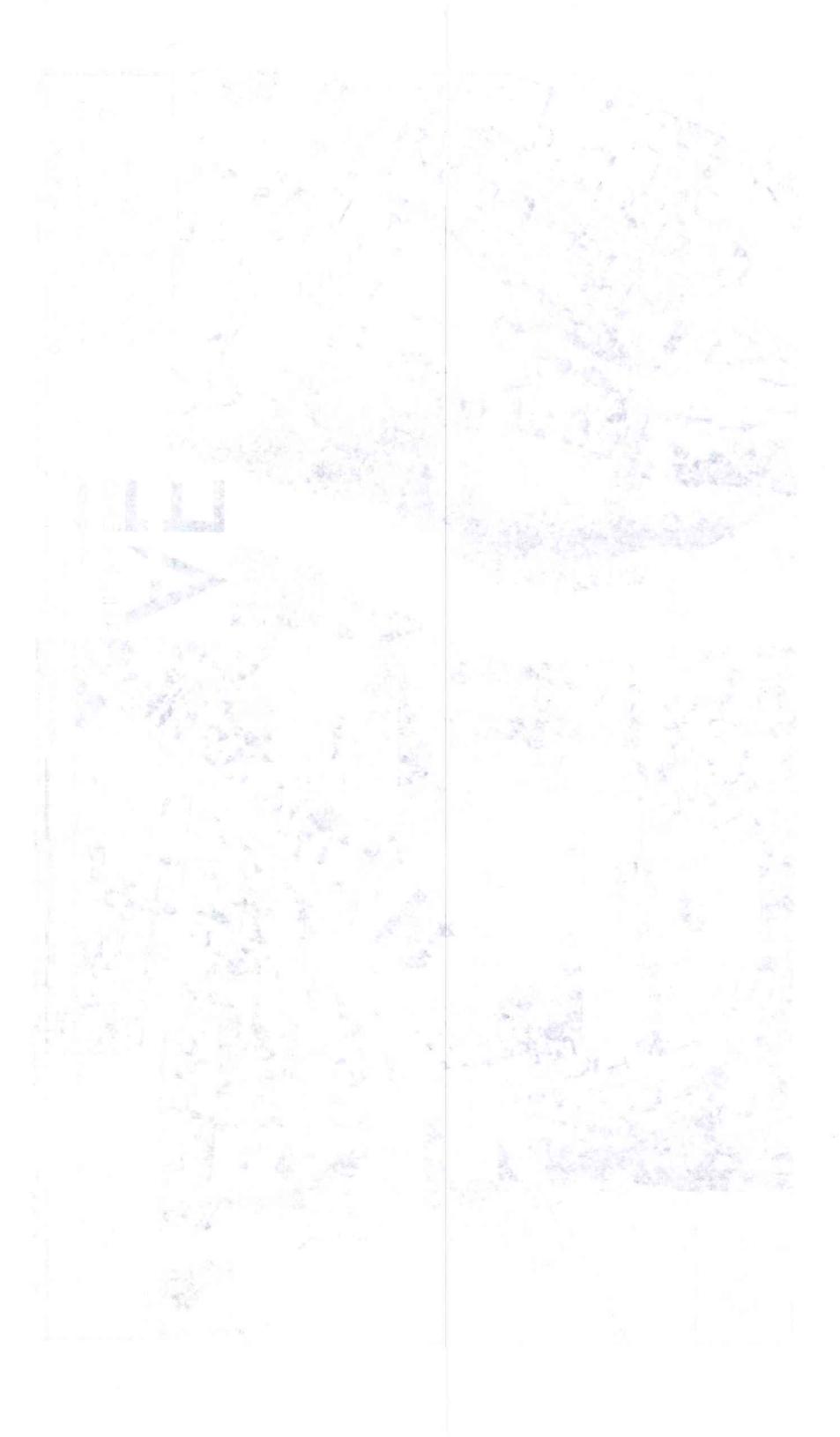
- Intestate Highway
- US Highway
- Vermont State Highway
- Town Highway
- + Rail Lines
- Town Boundaries

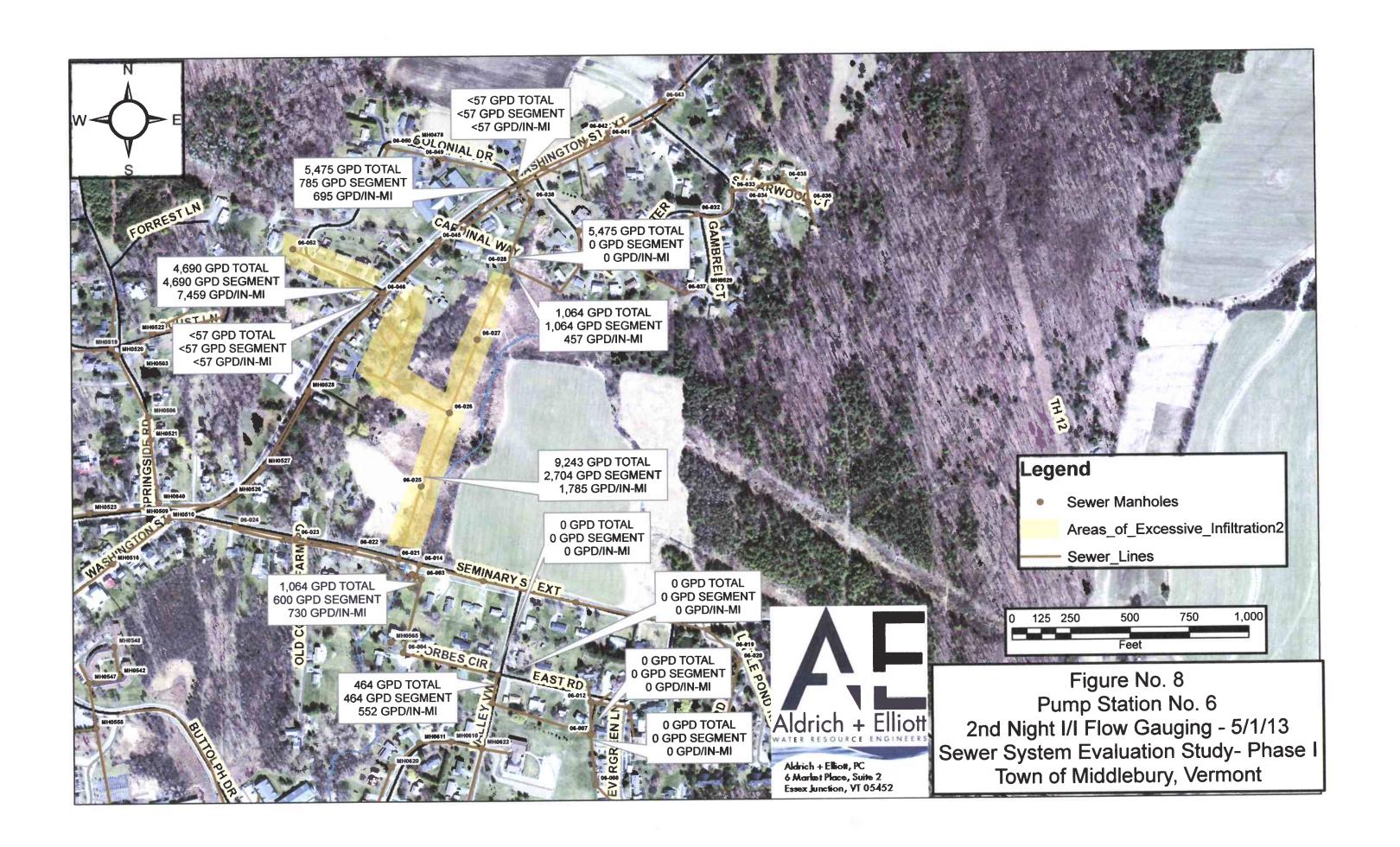


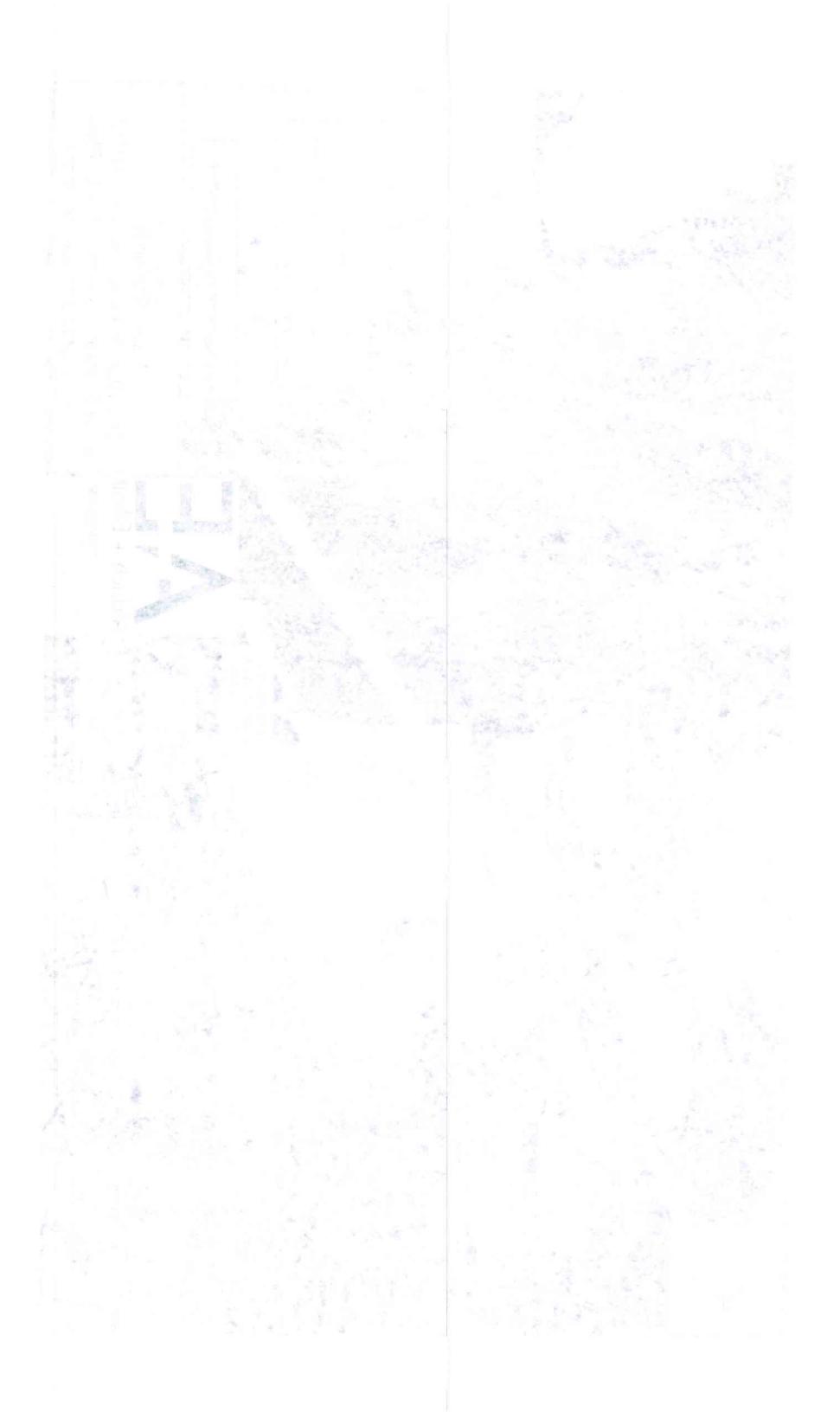

FIGURE NO. 1
LOCATION MAP
SEWER SYSTEM EVALUATION STUDY- PHASE I
TOWN OF MIDDLEBURY
MIDDLEBURY, VERMONT

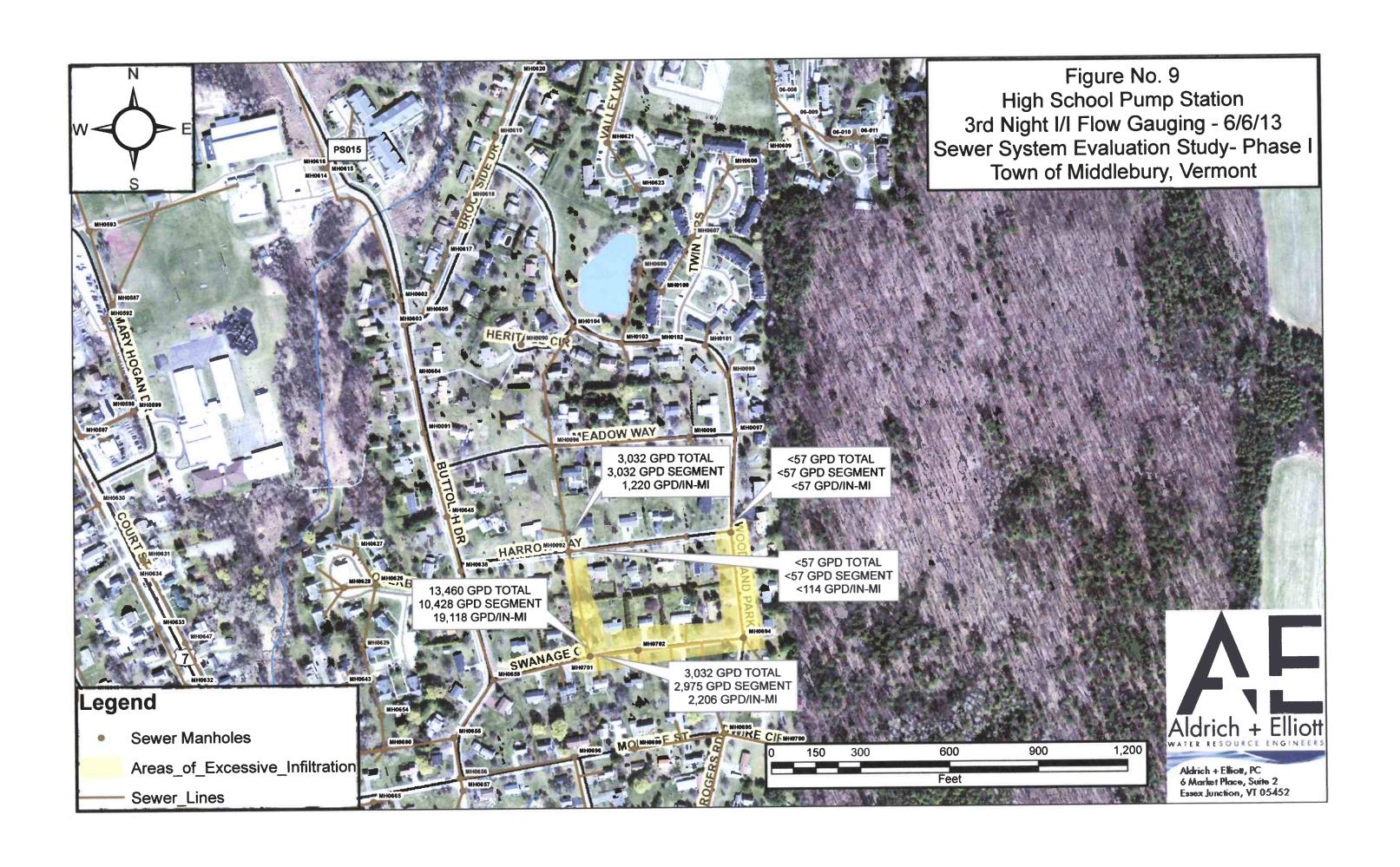


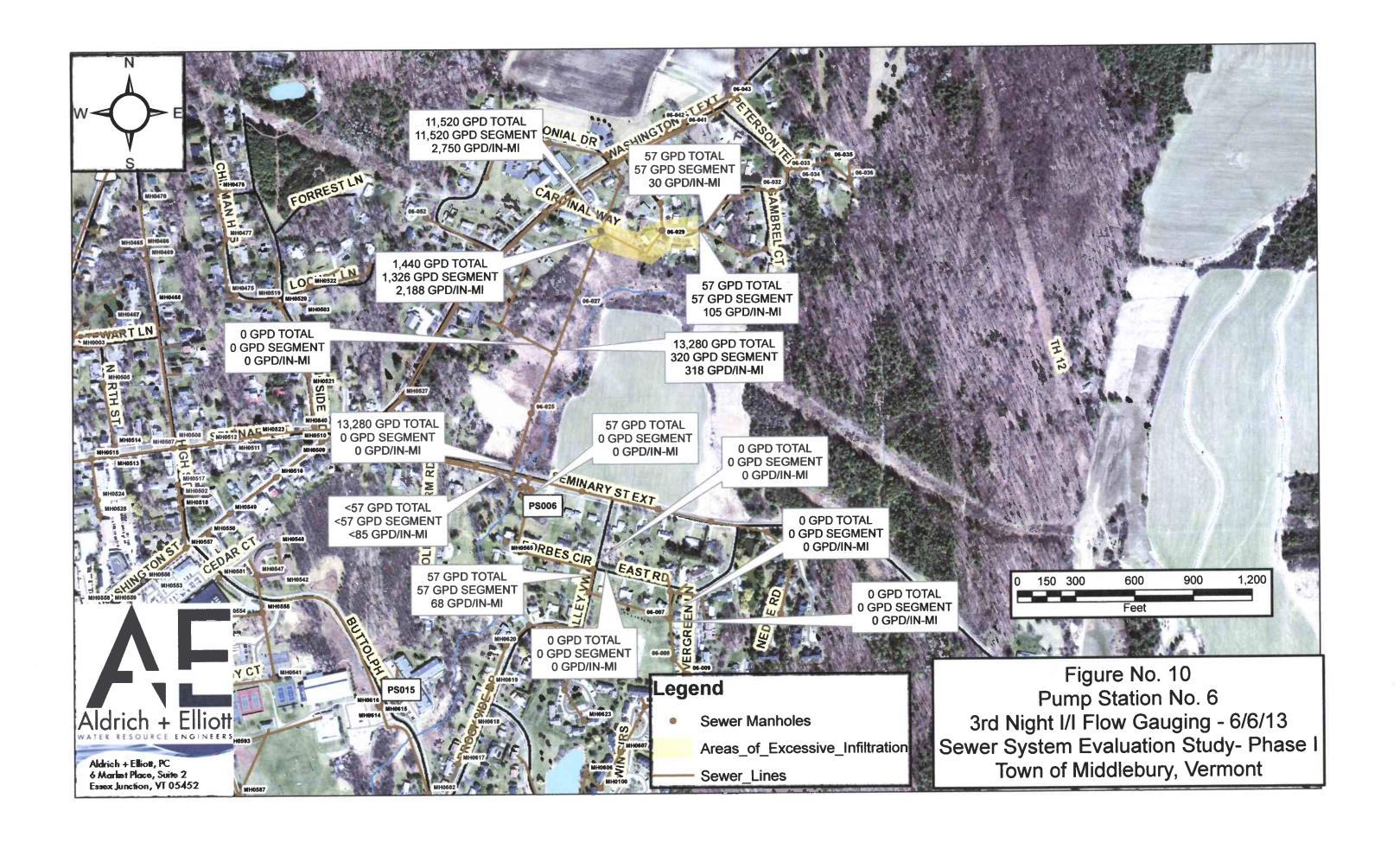


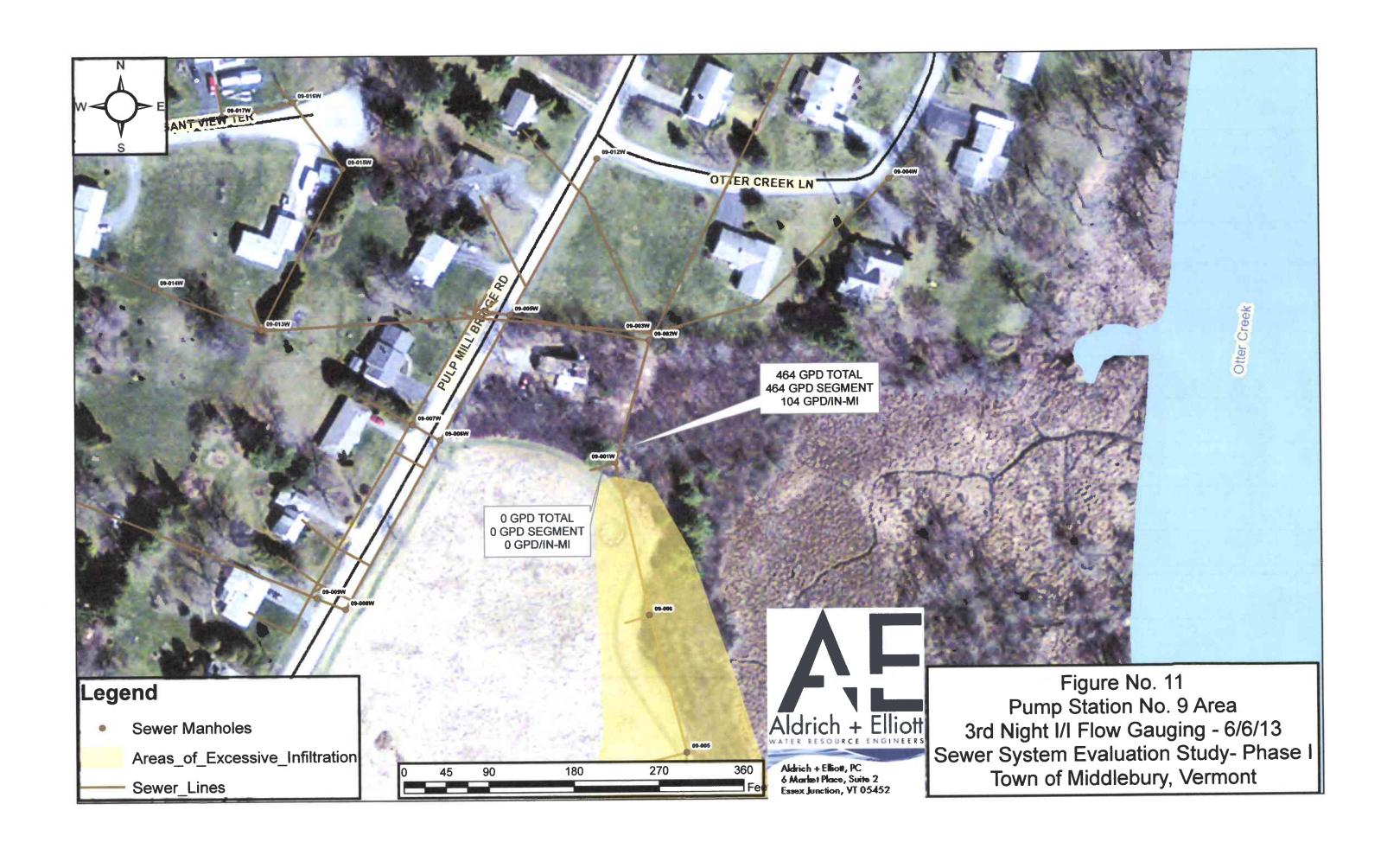


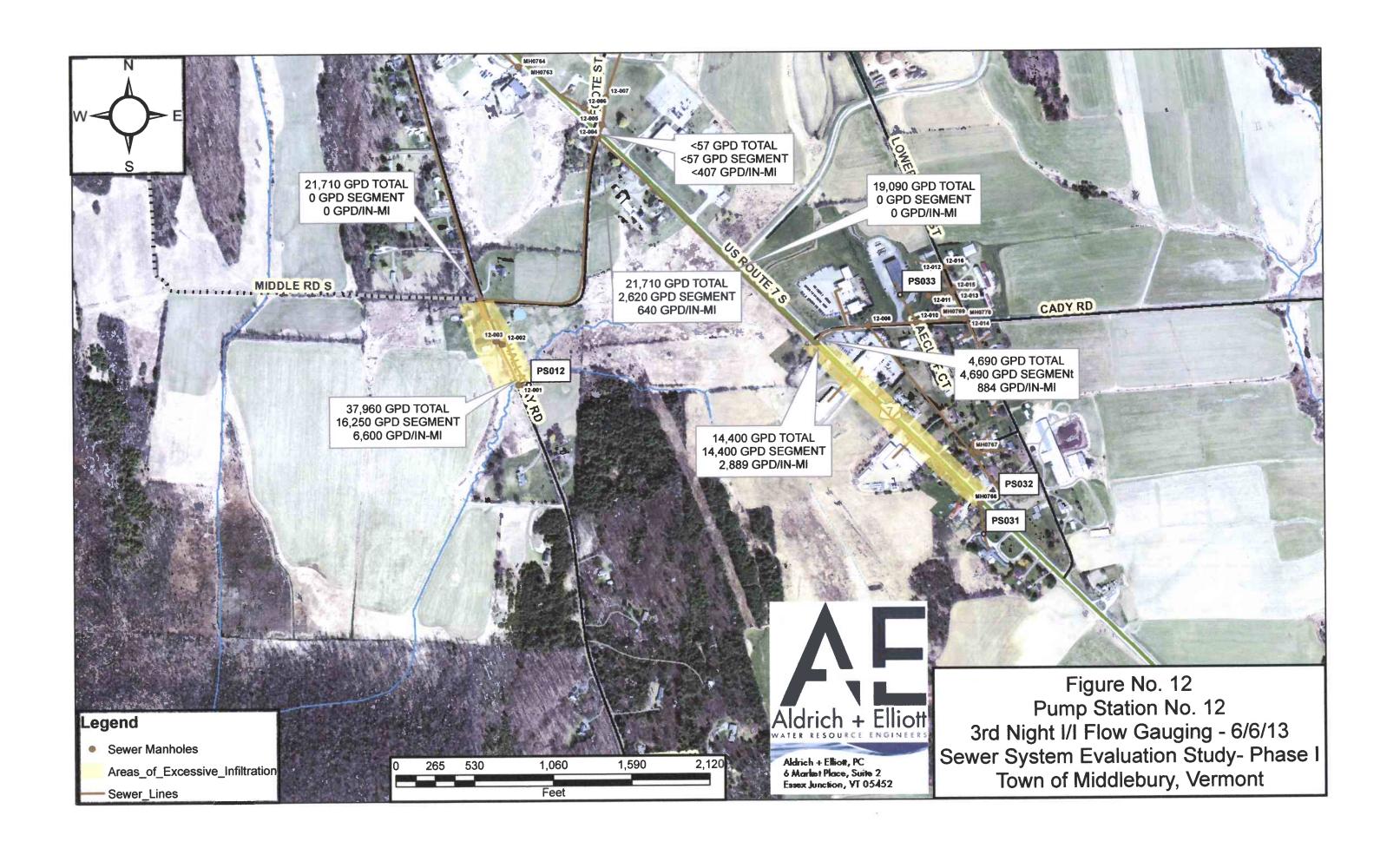


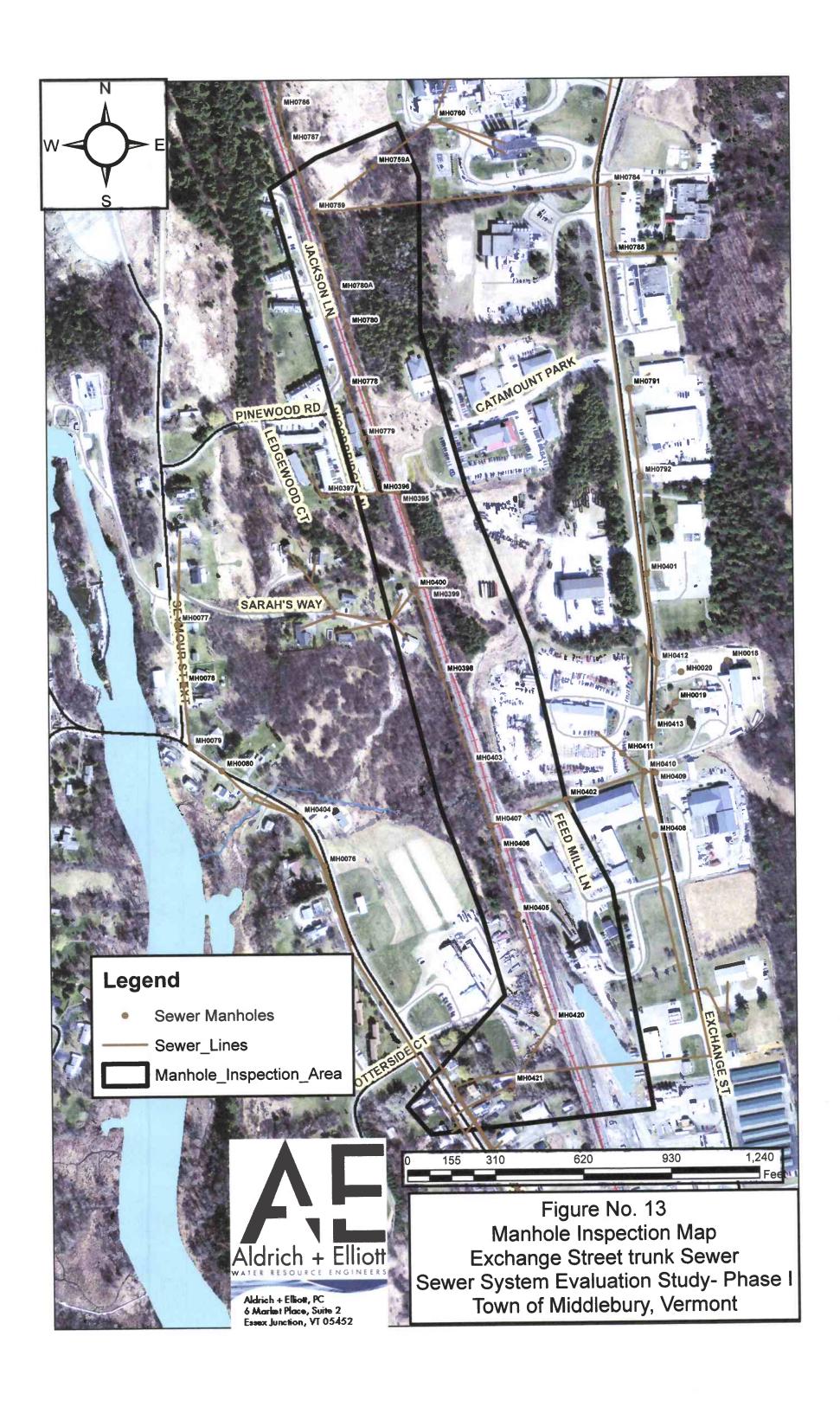


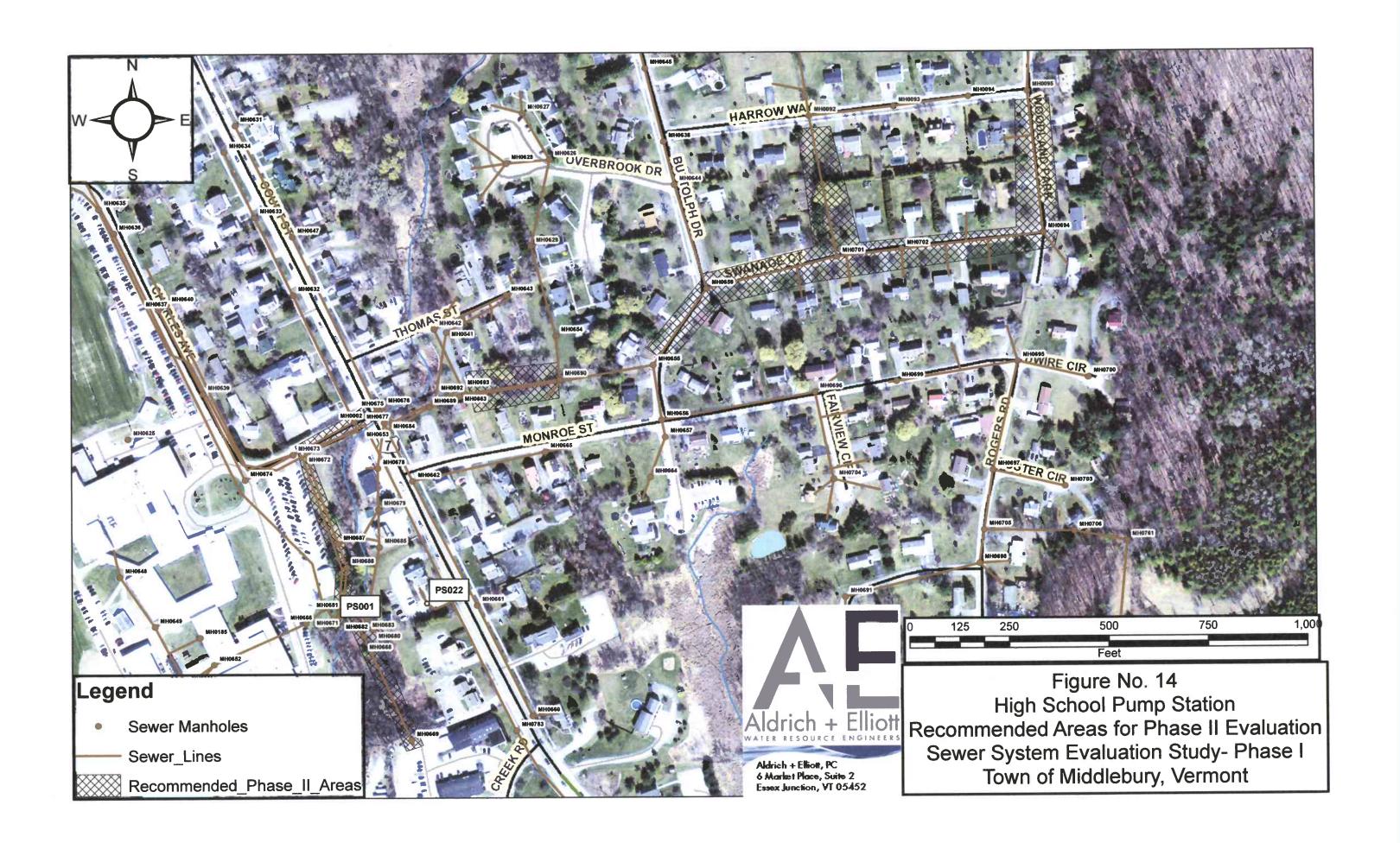


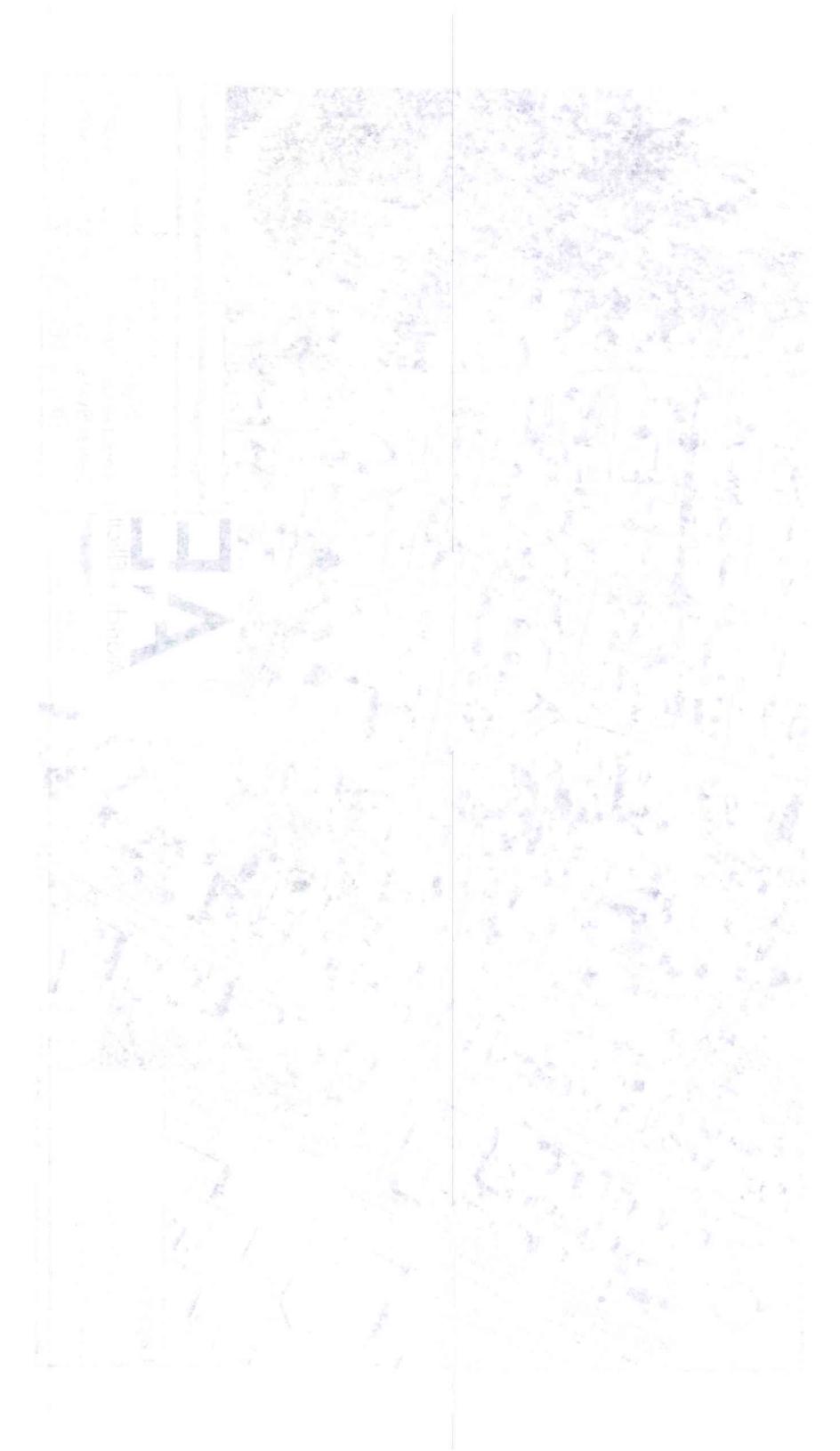


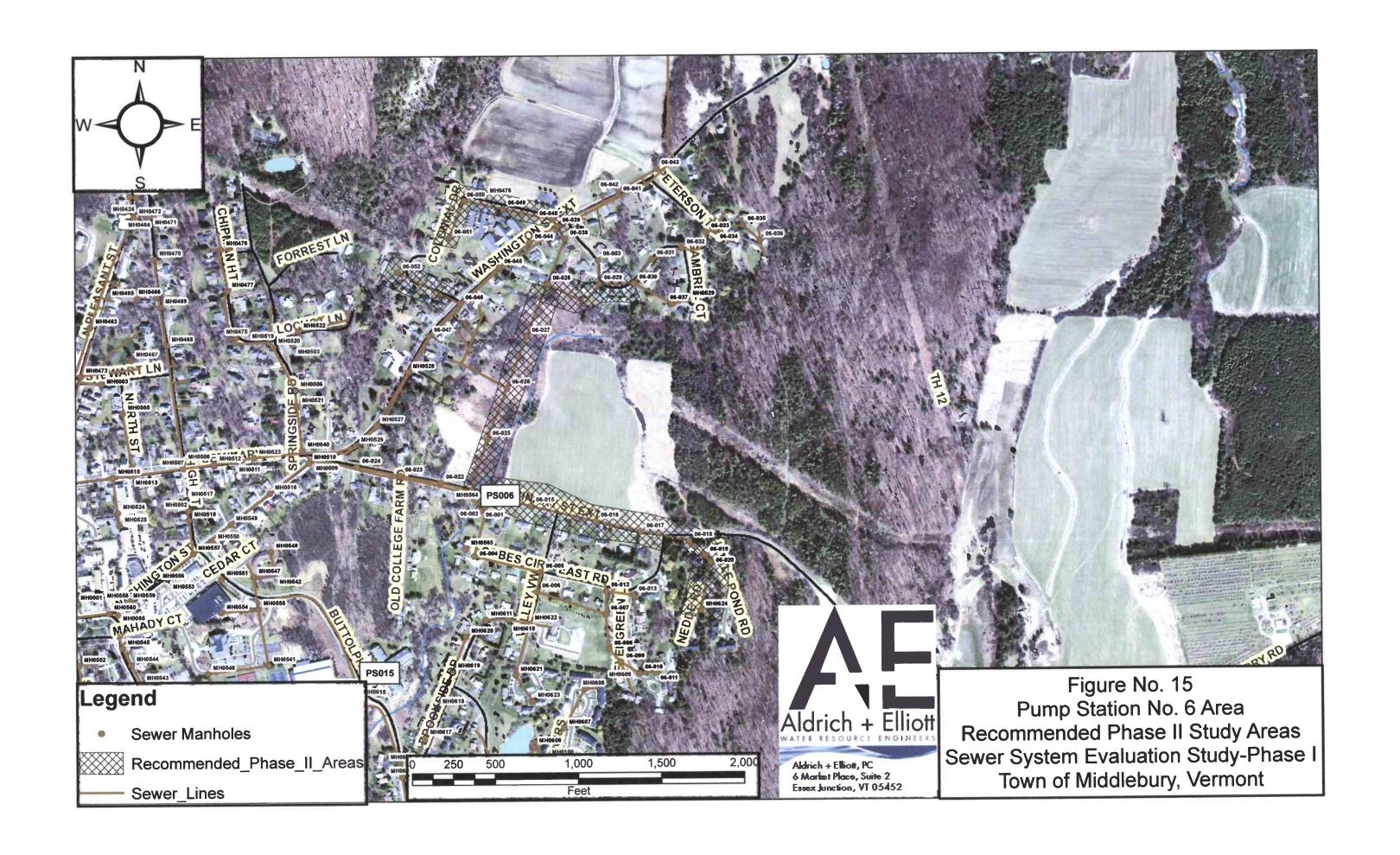


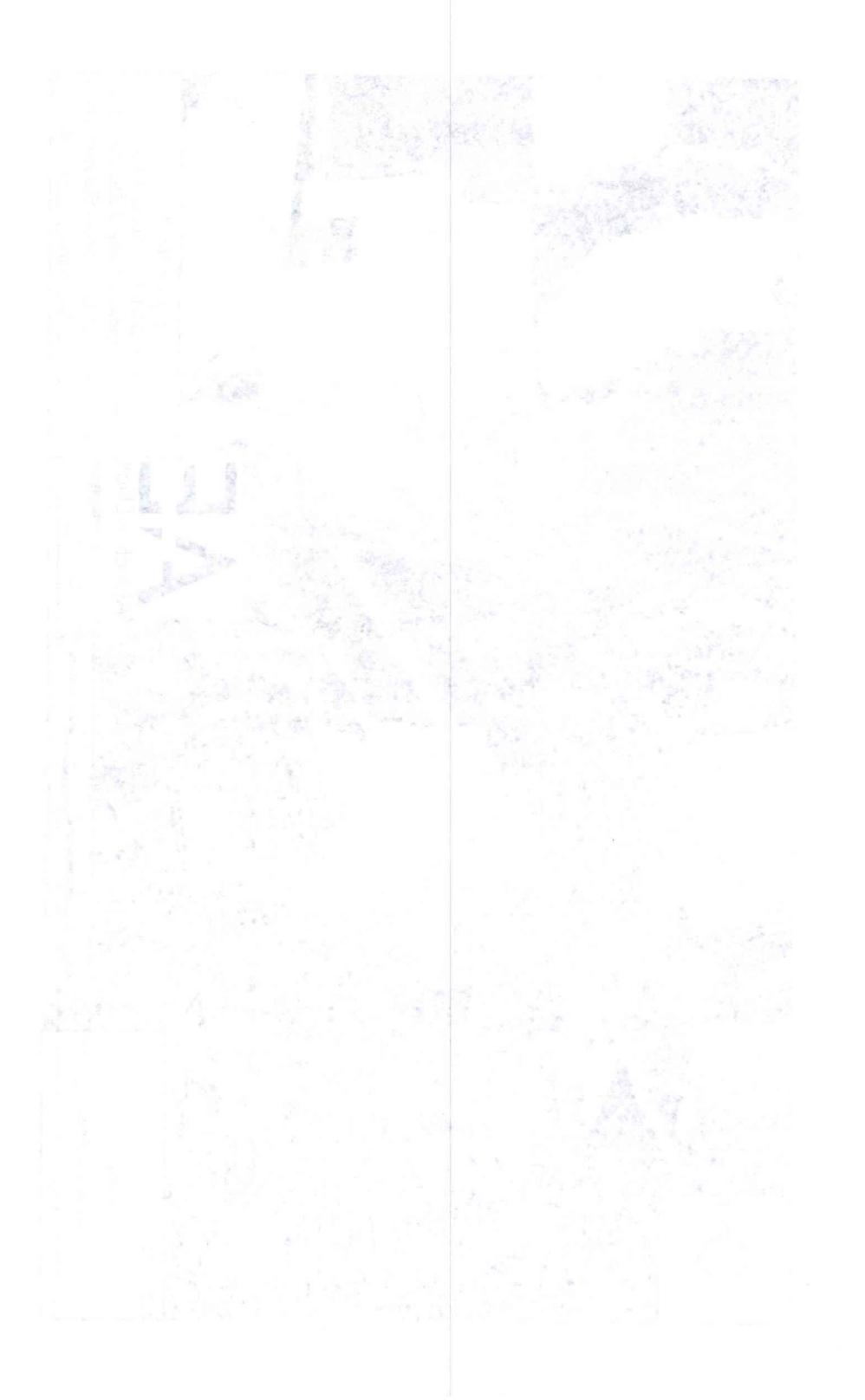


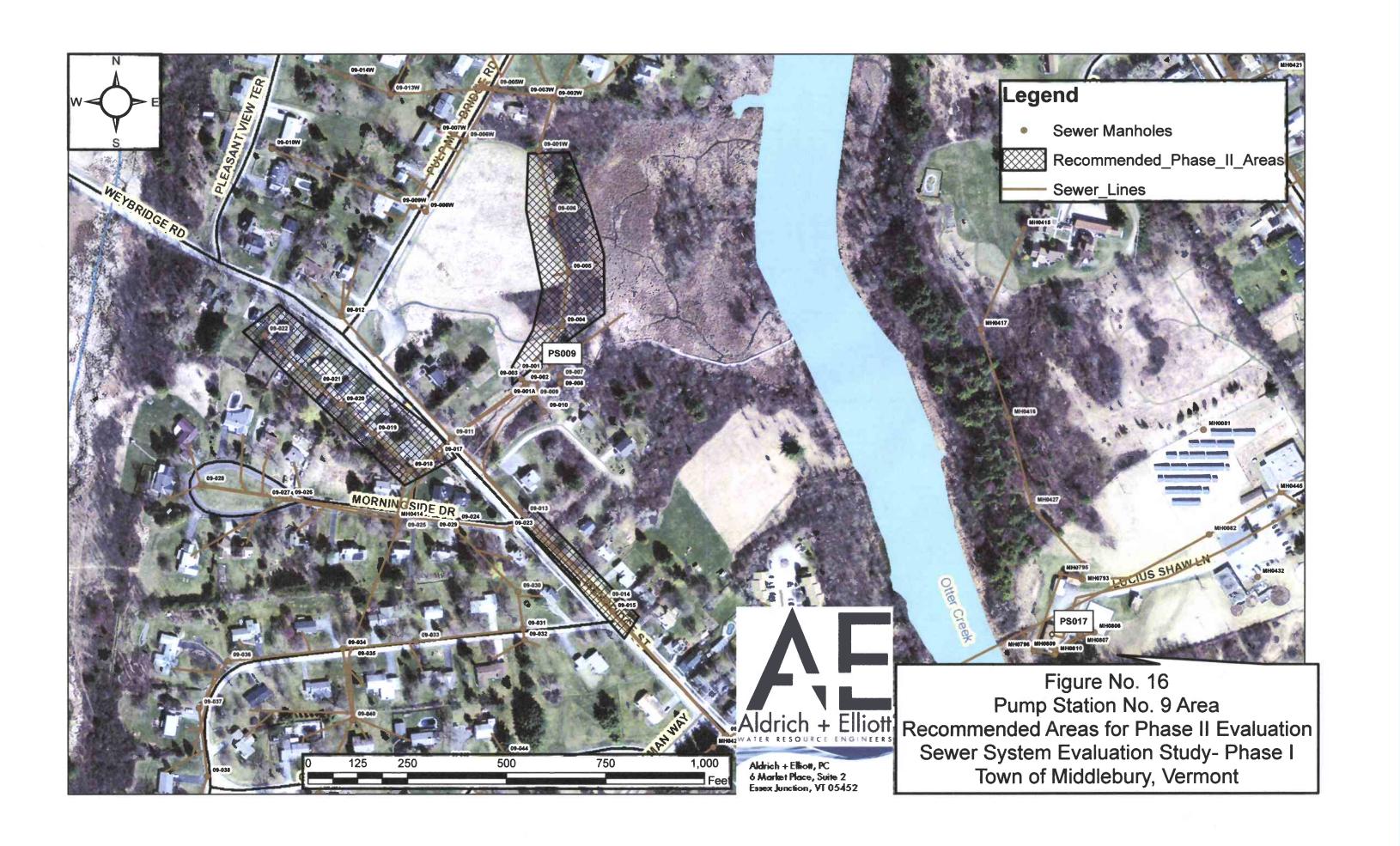

	1-34
	The state of the s
	네는 이 경기에 다른 사람이 다른 사람이 되었다.
나는 사람이 되었습니다. 그 나는 그는 그를 다 그 것이다.	

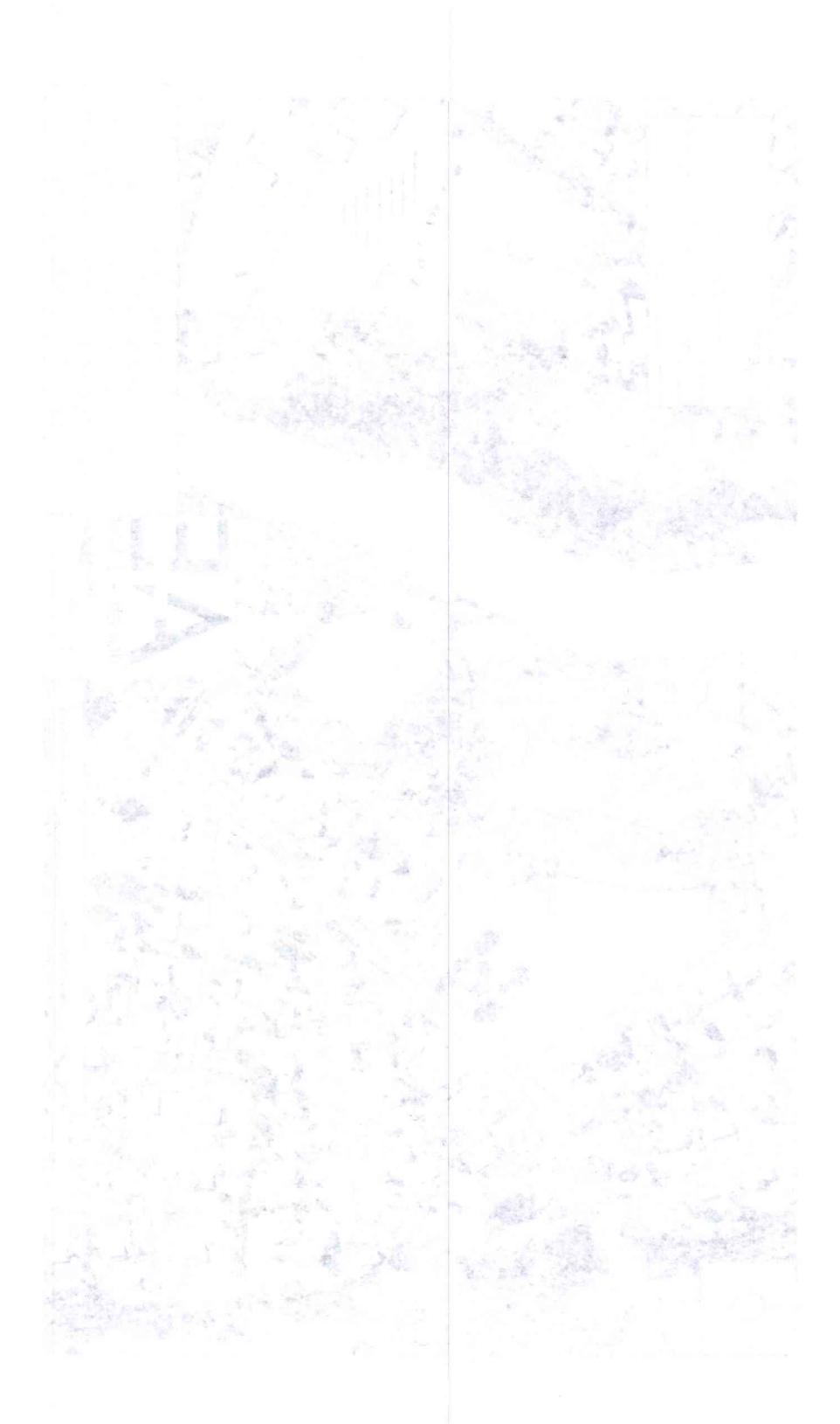


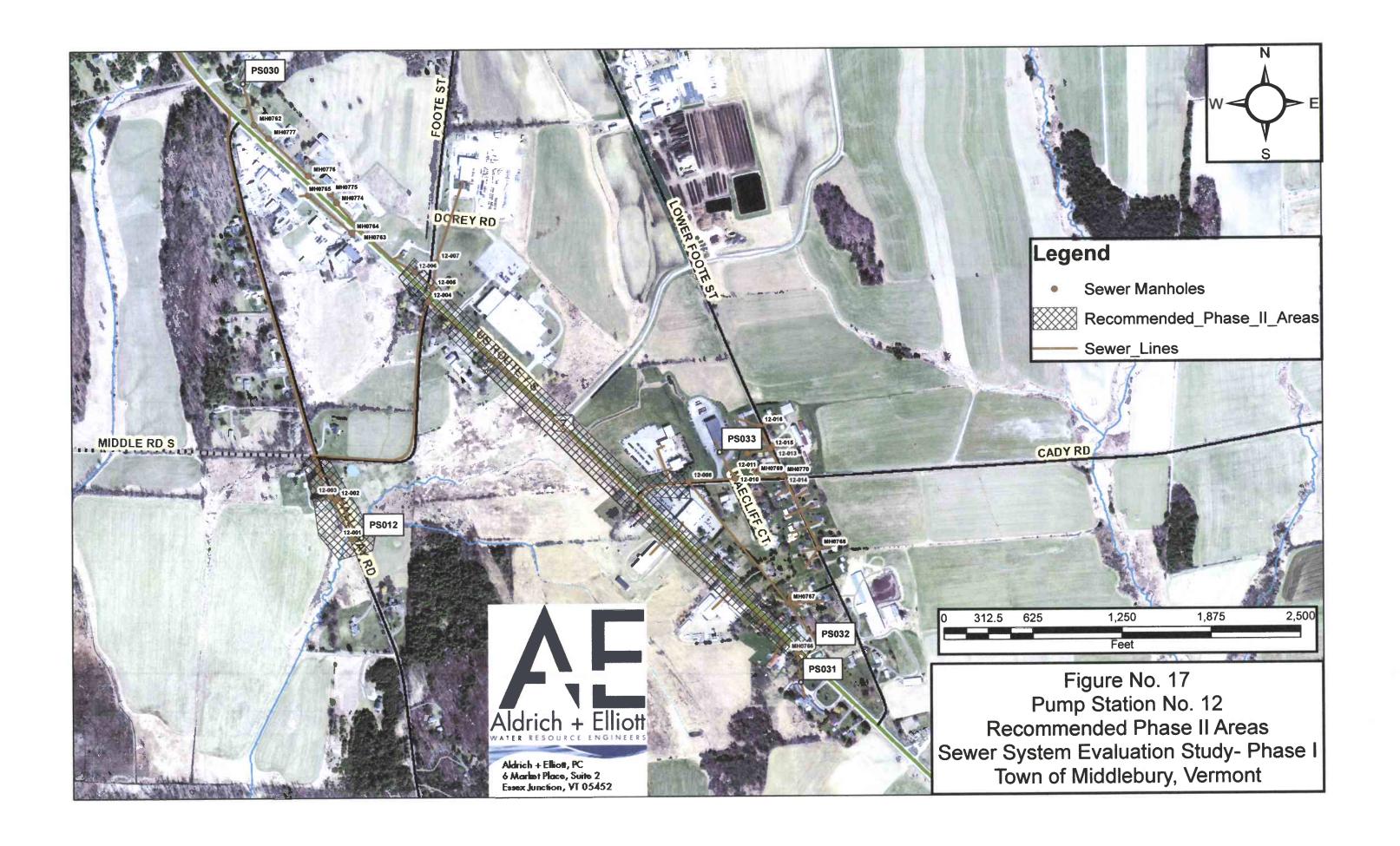


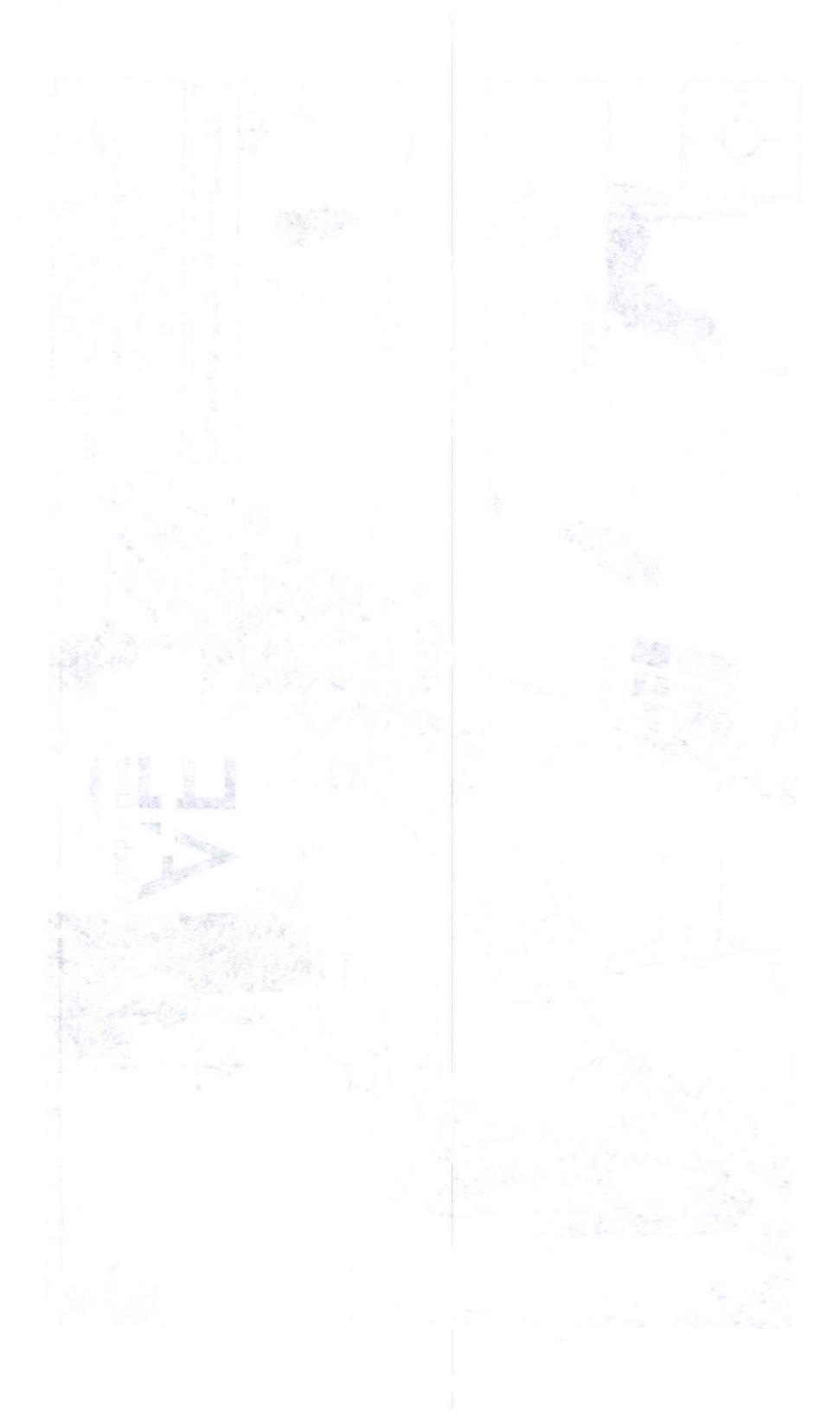


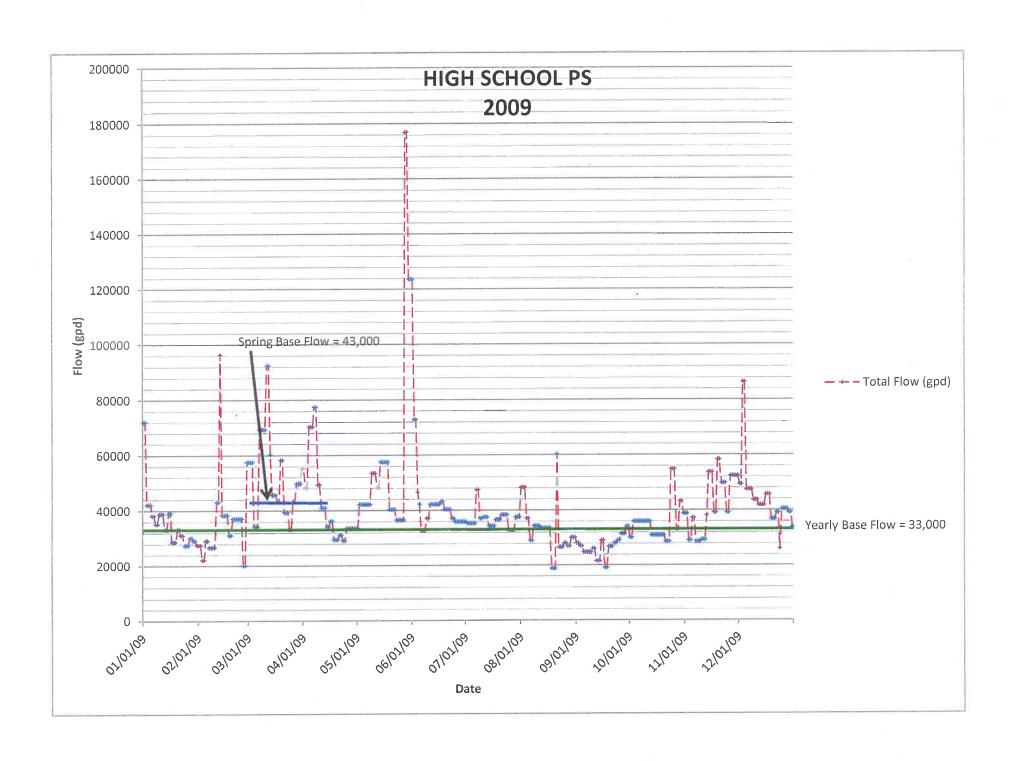


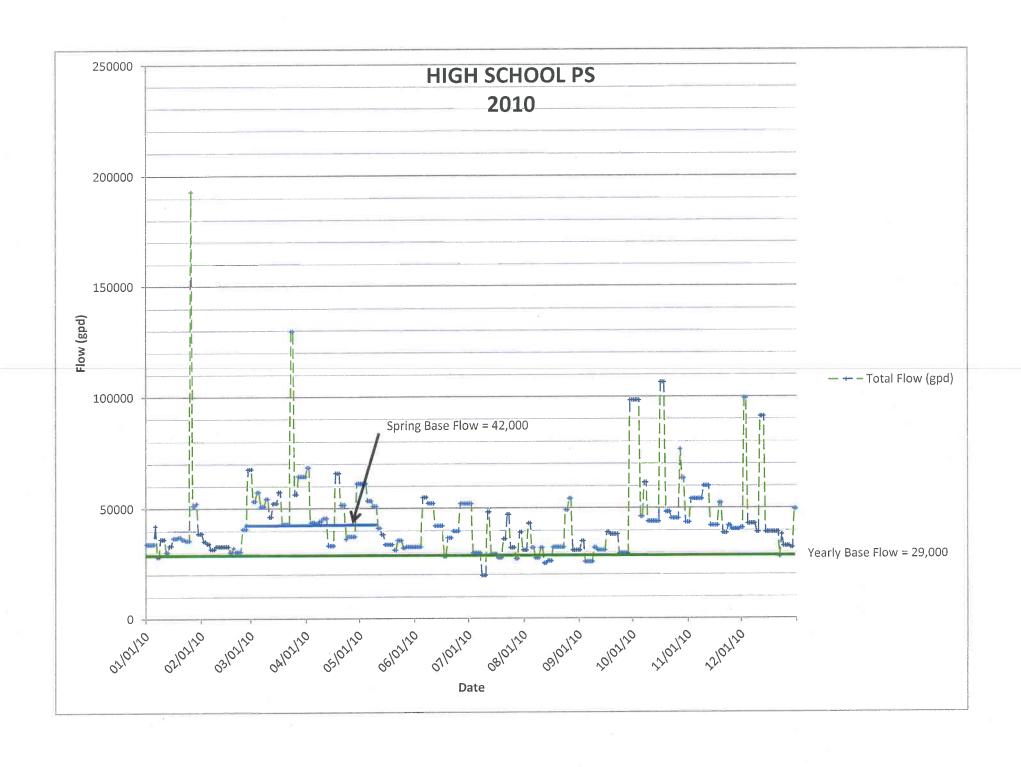

*

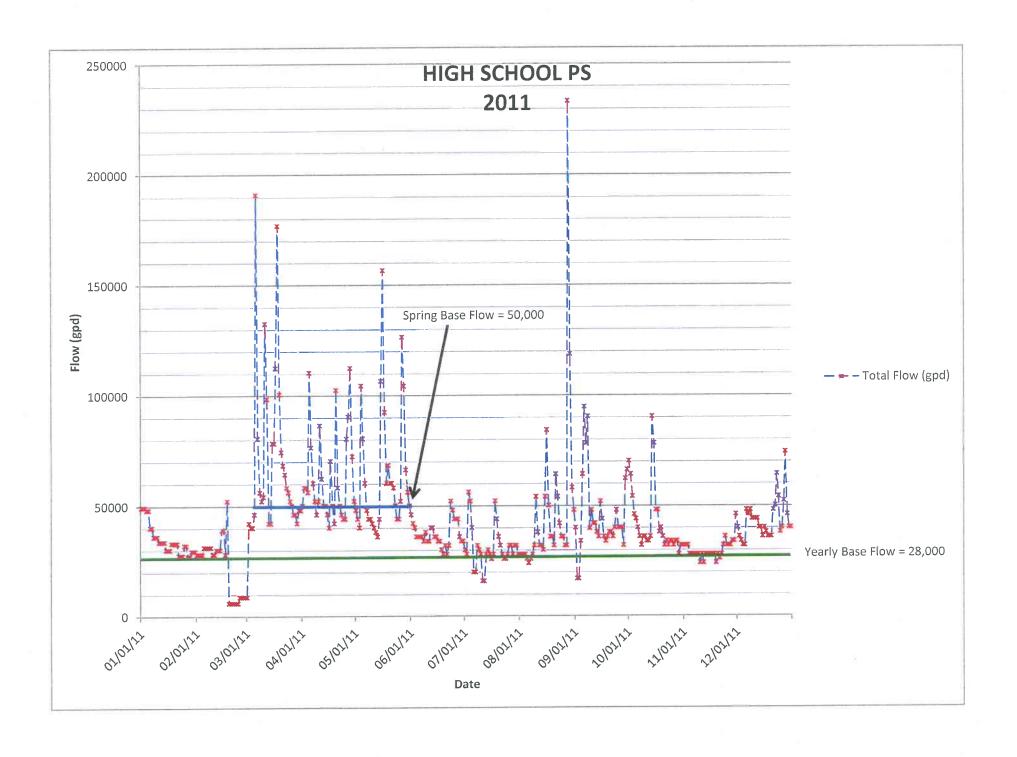


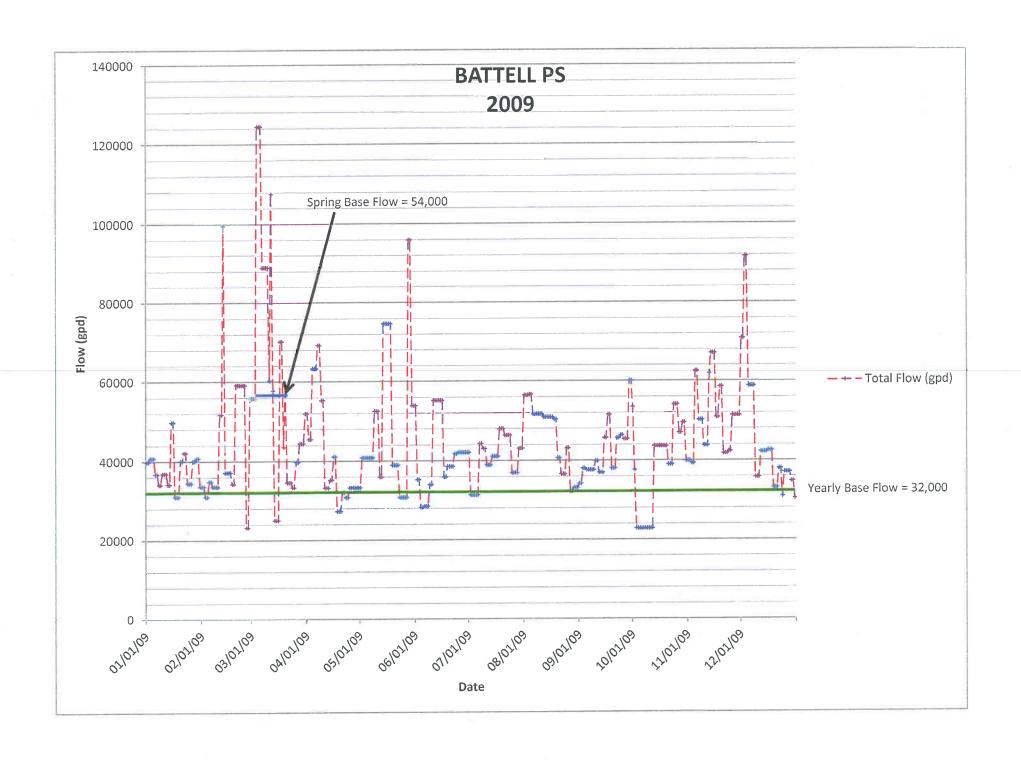


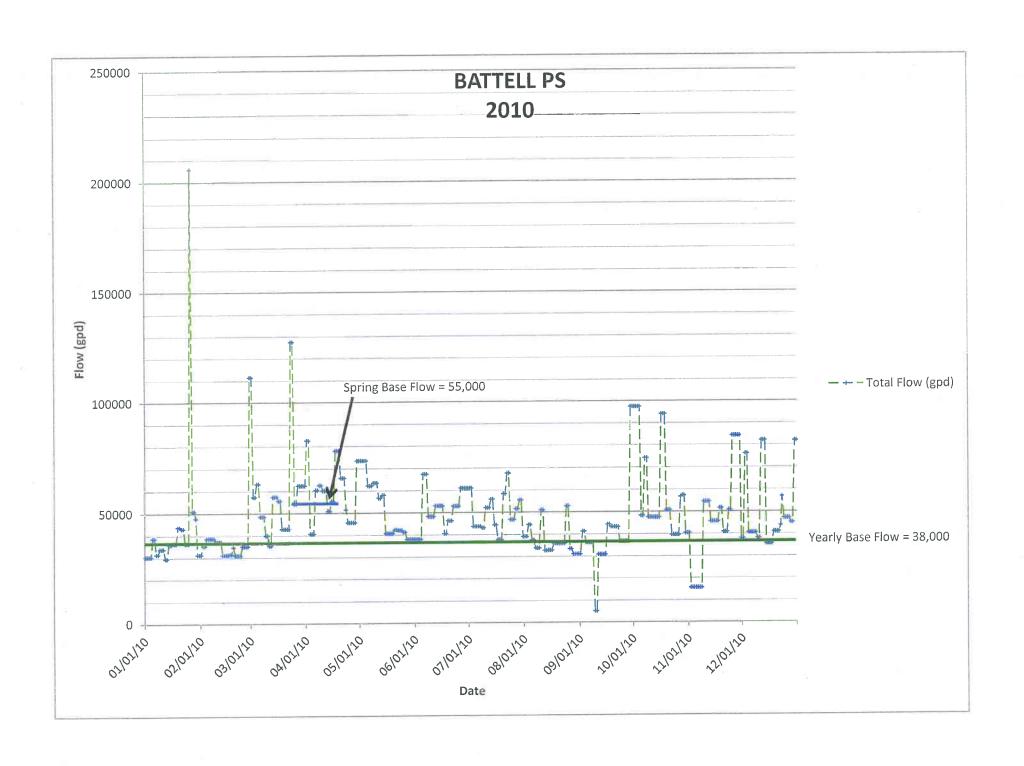


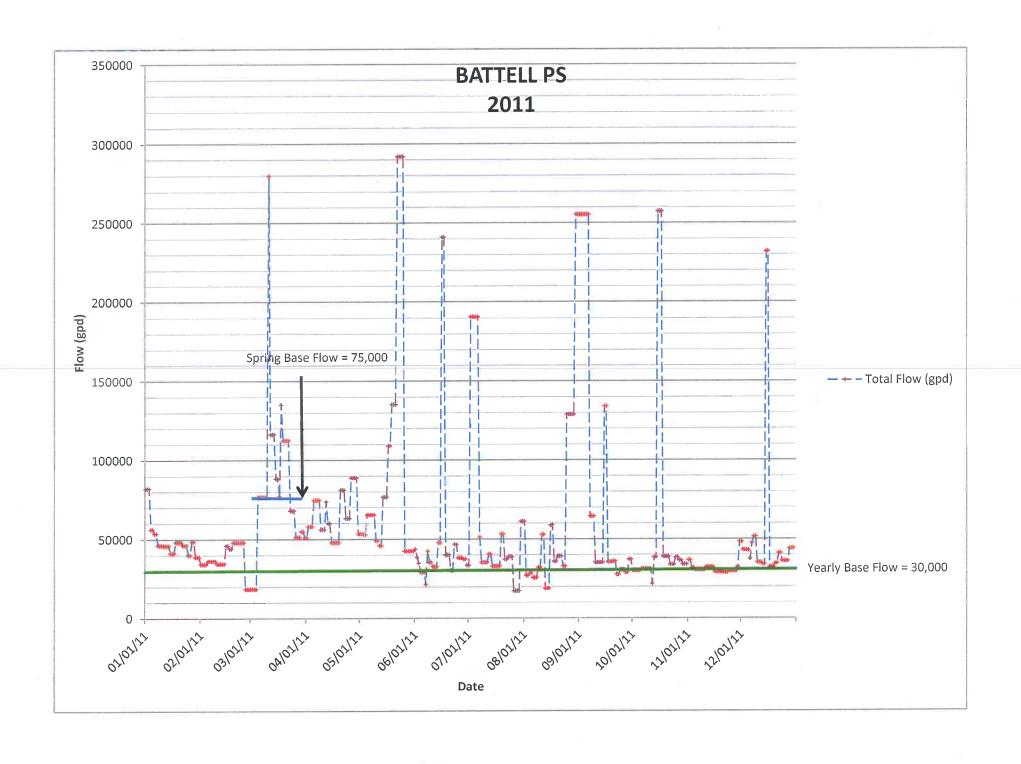


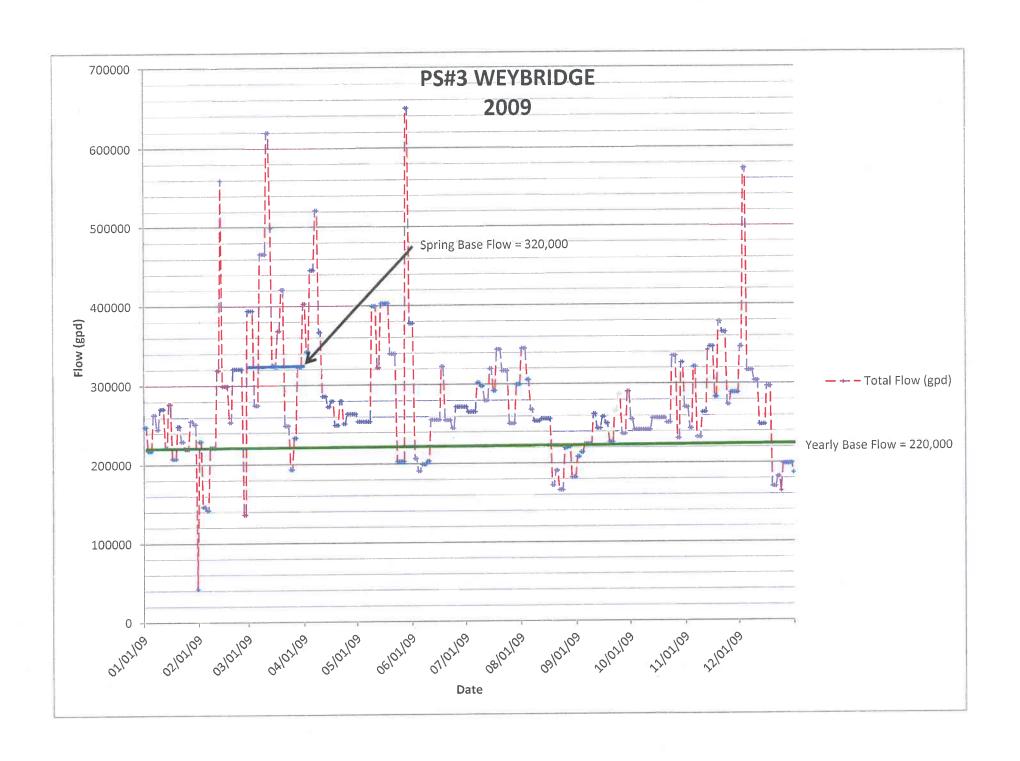


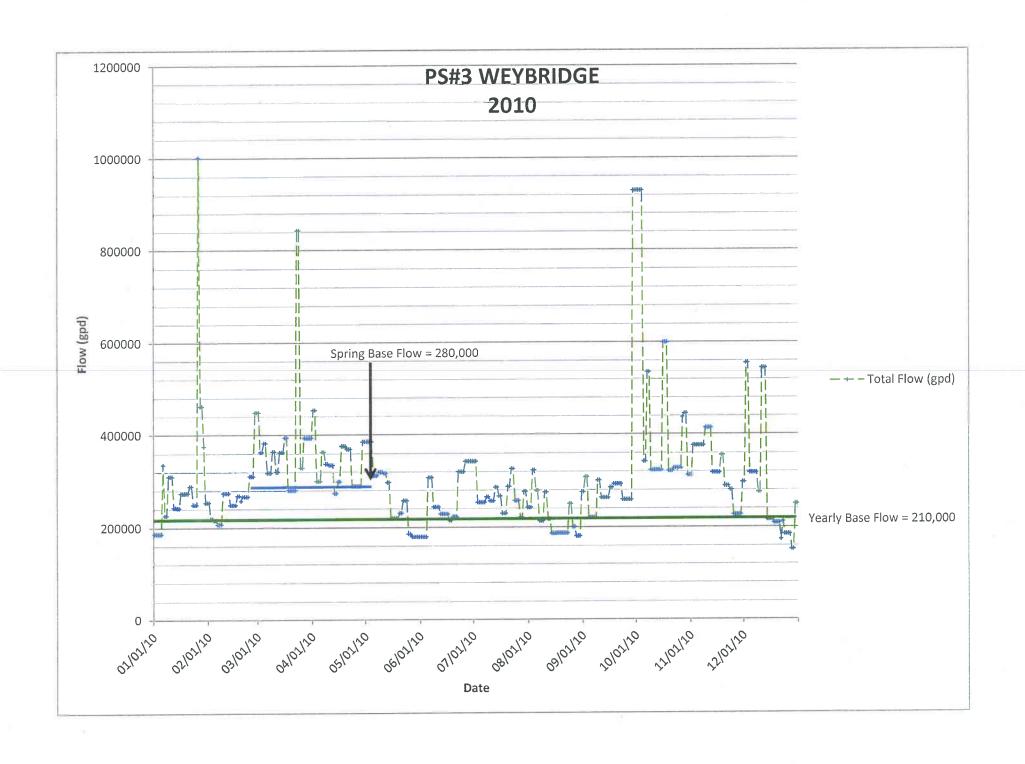


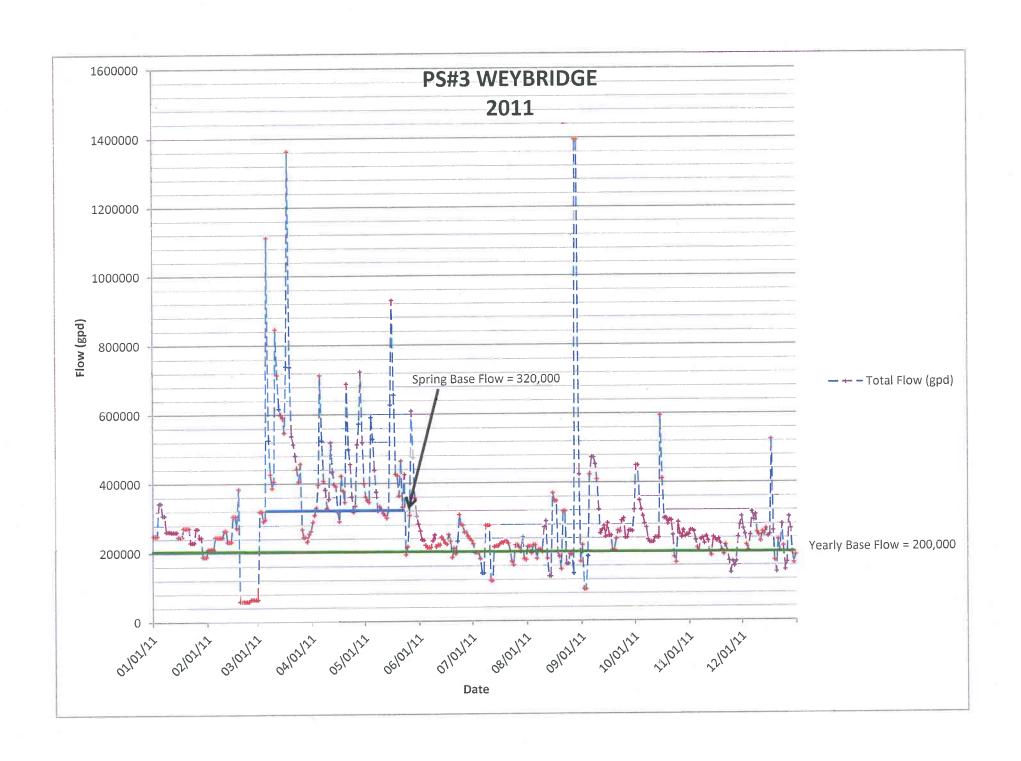


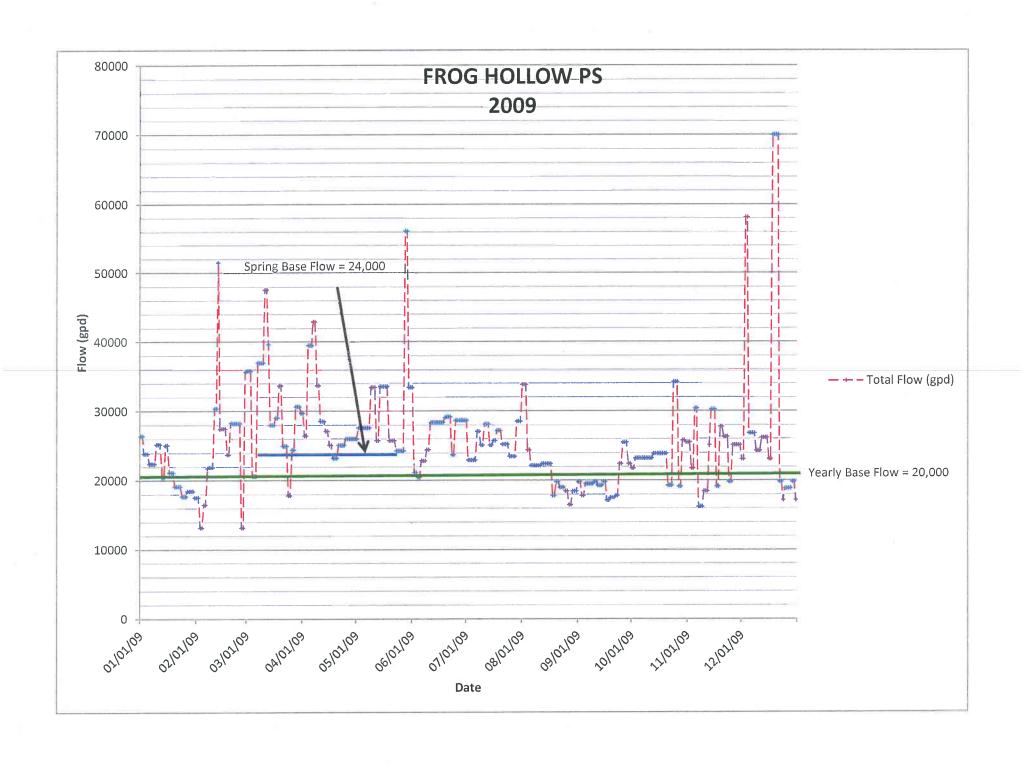

APPENDIX B PUMP STATION FLOW DATA

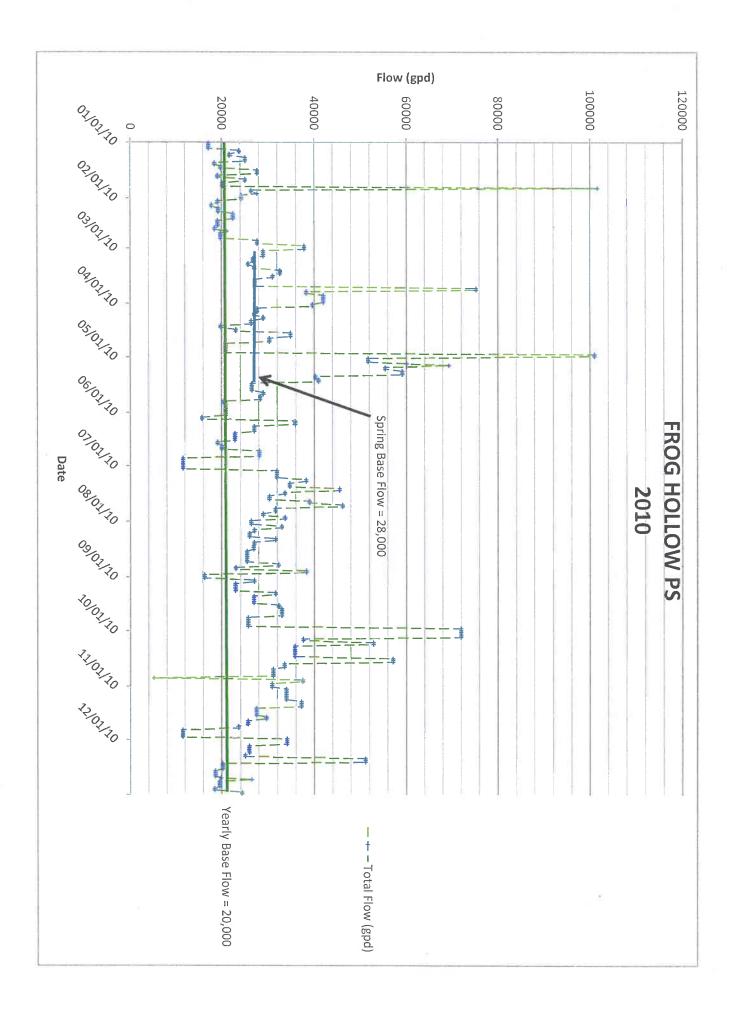


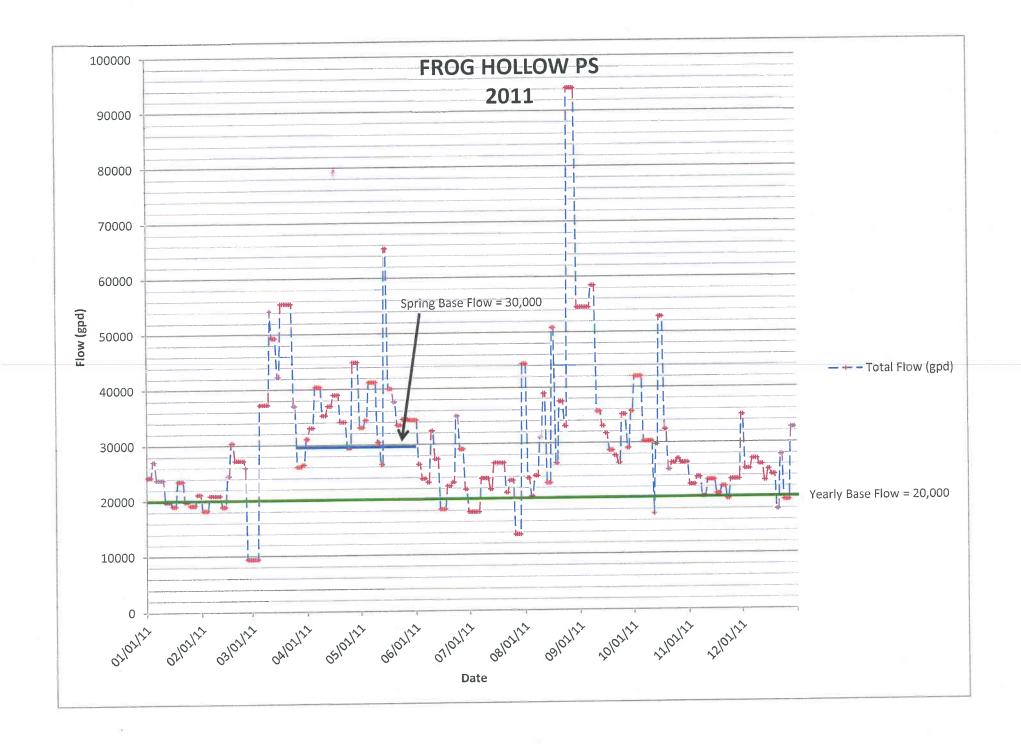


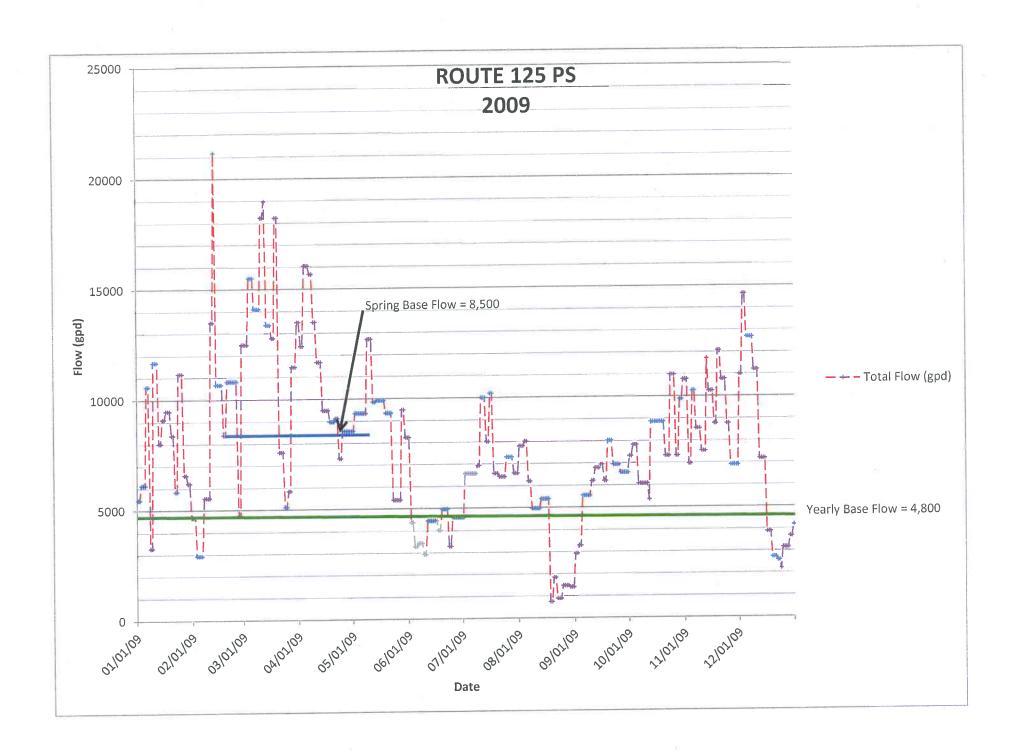


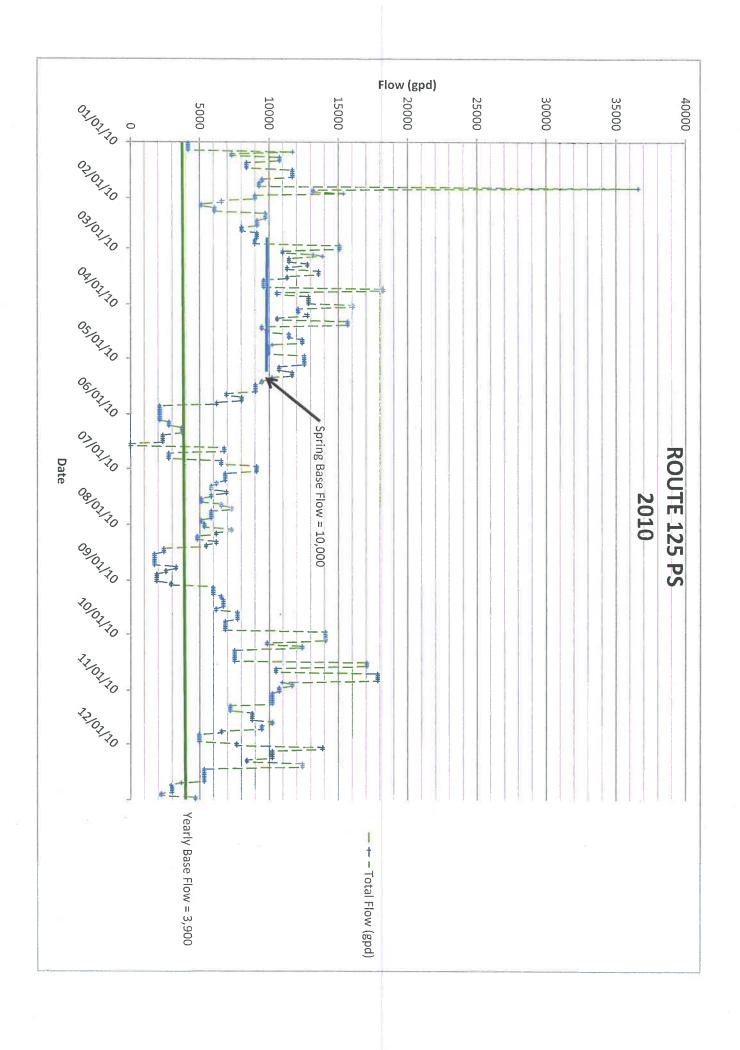


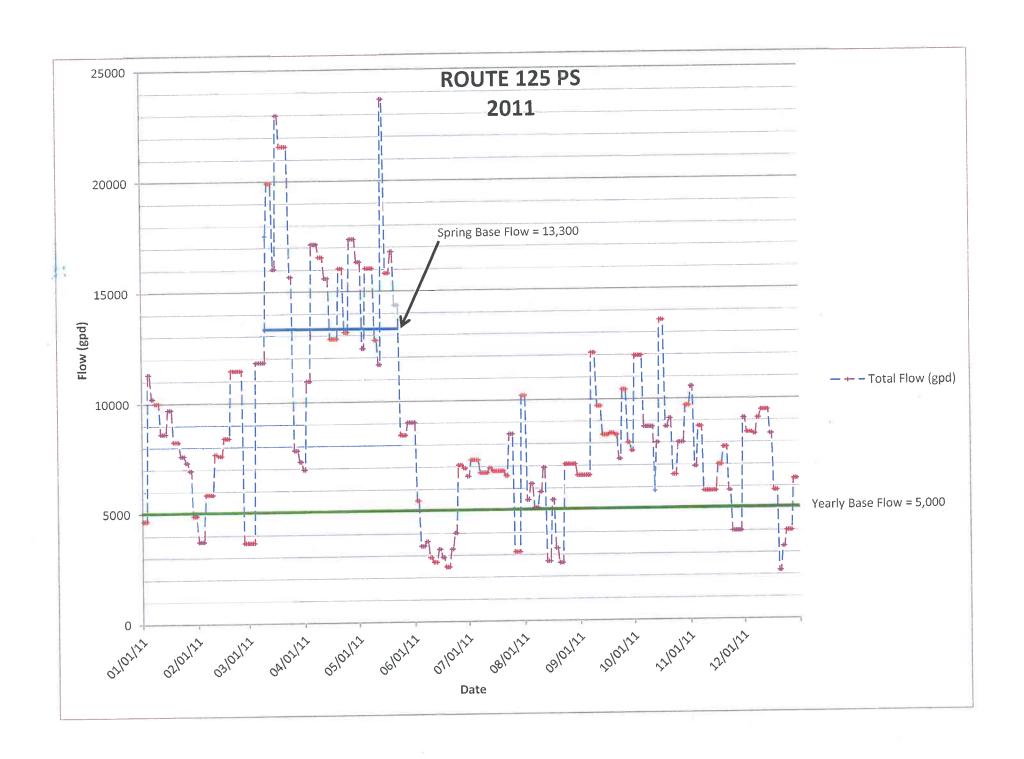


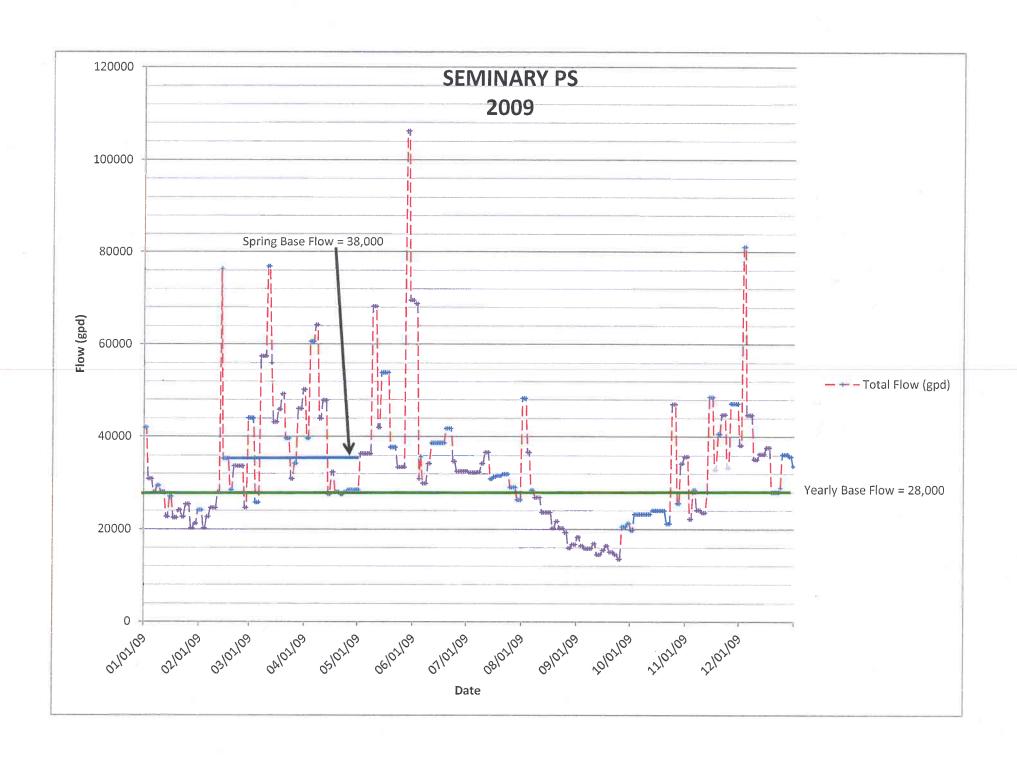


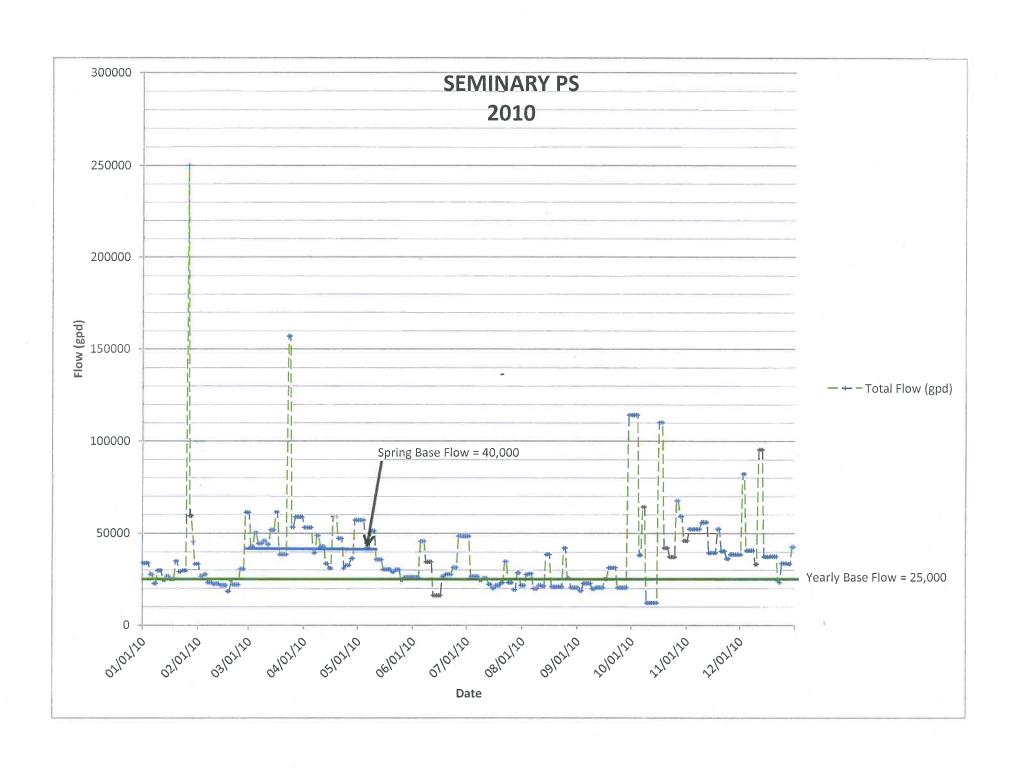


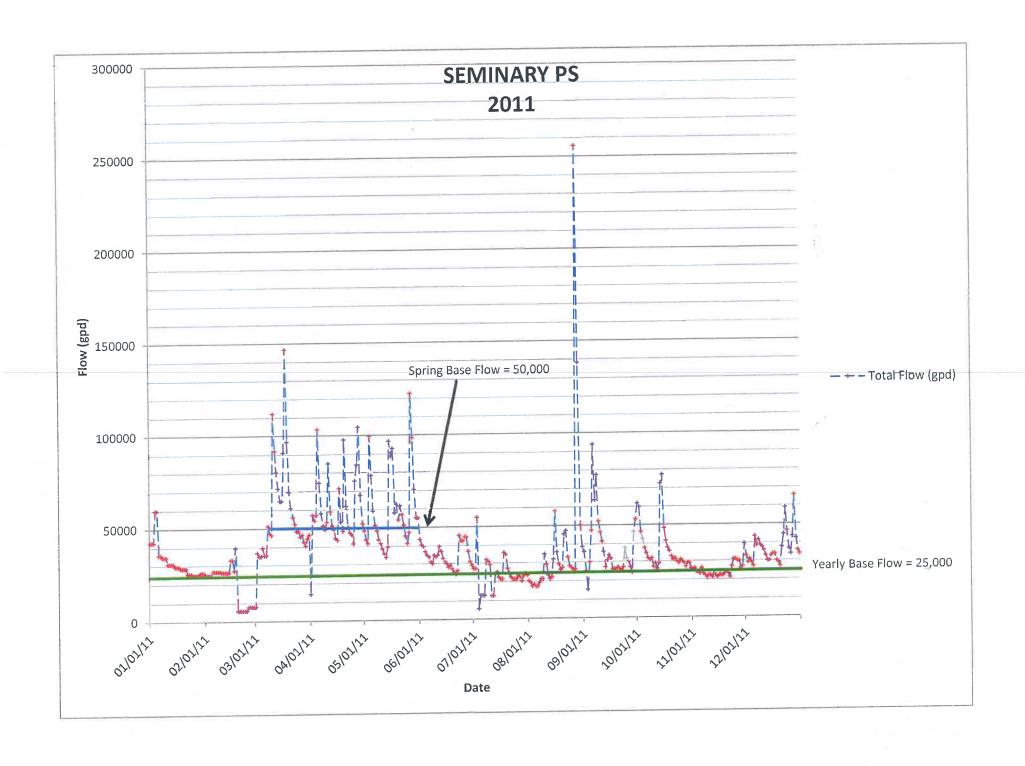


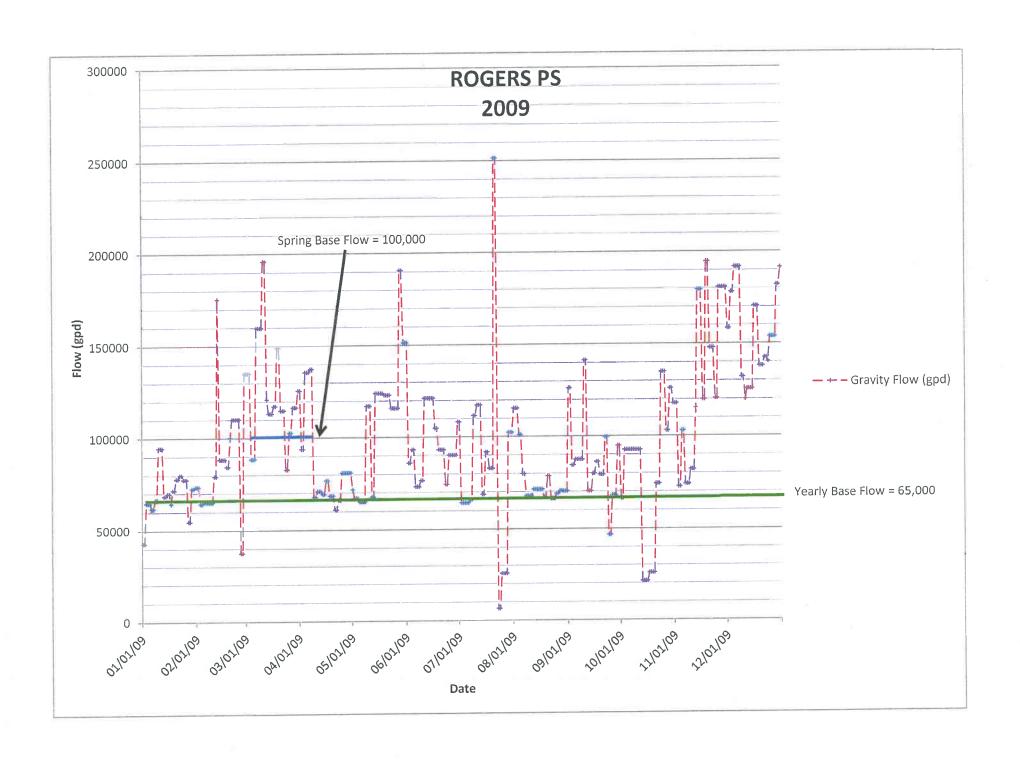


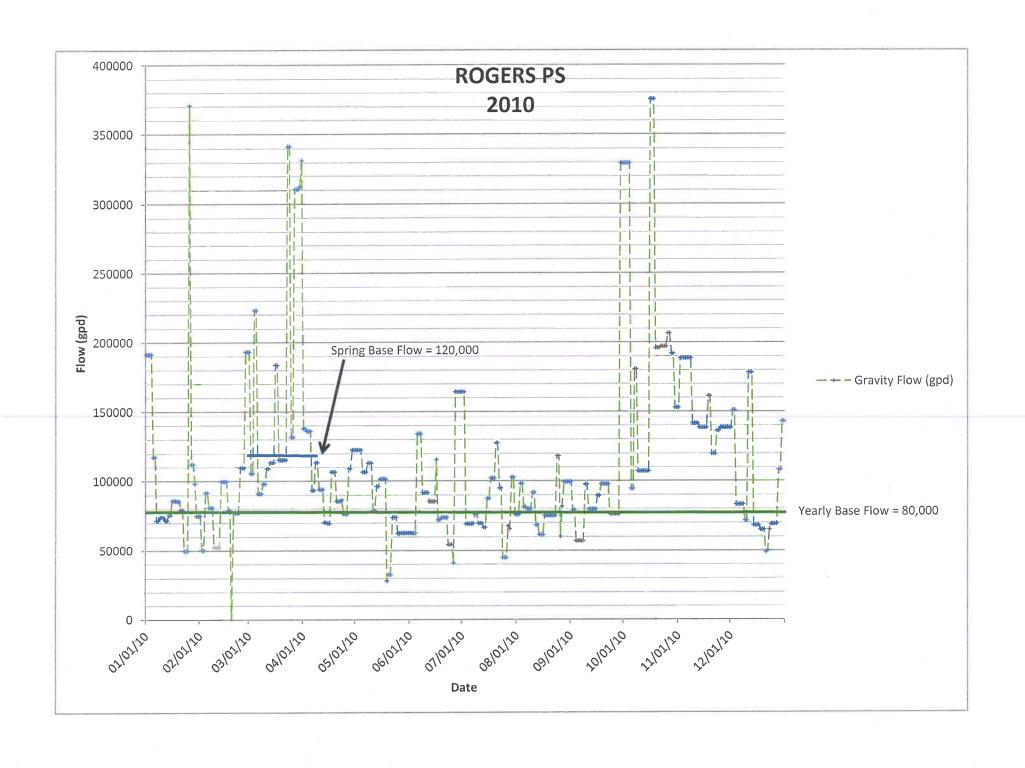


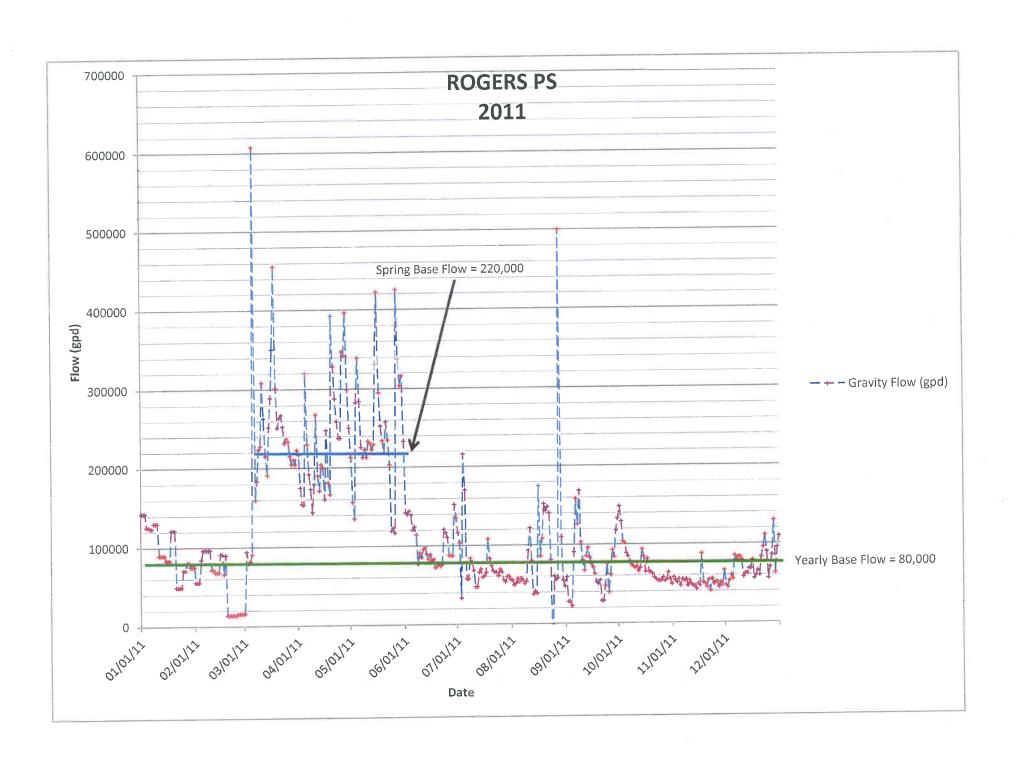


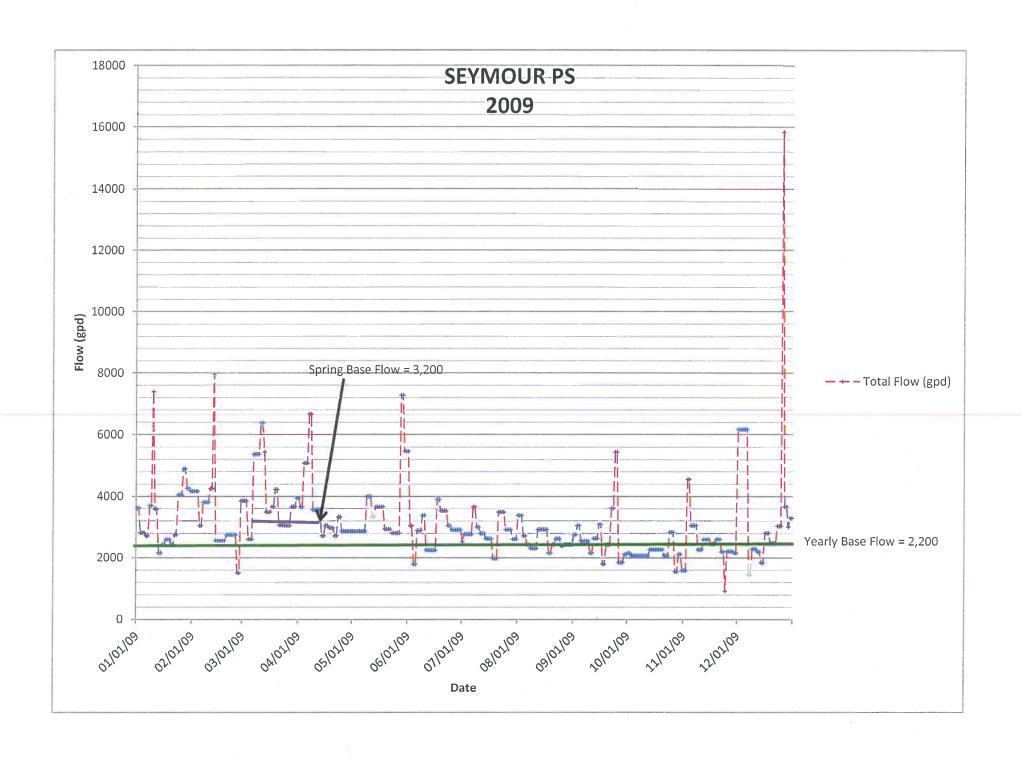


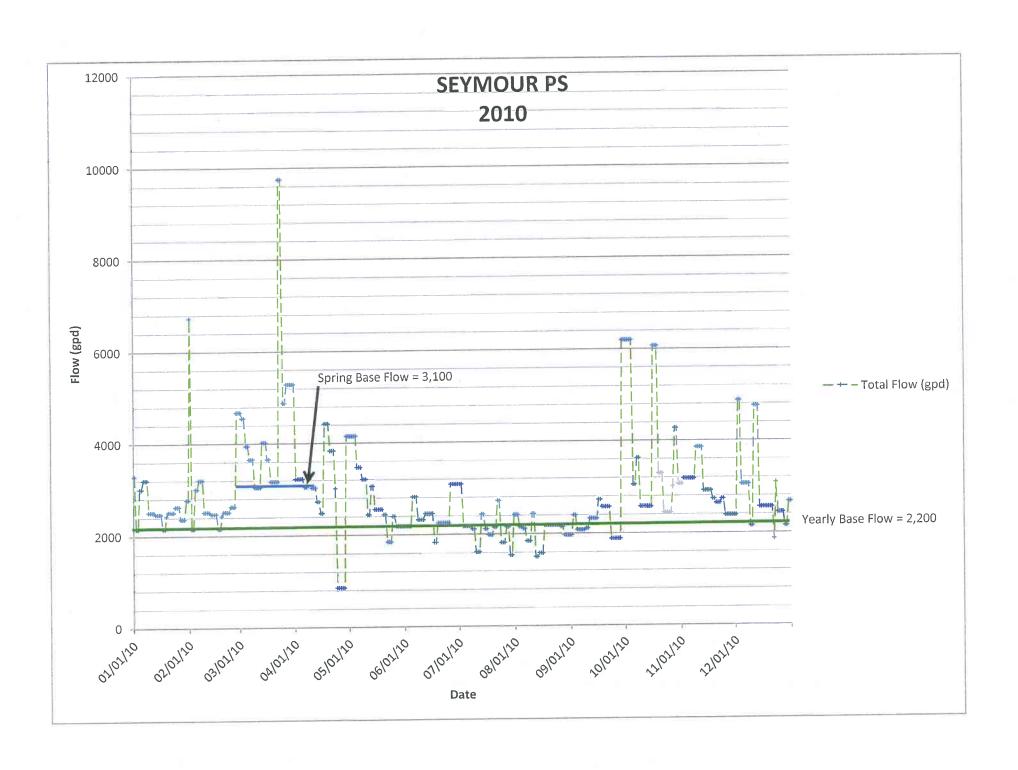


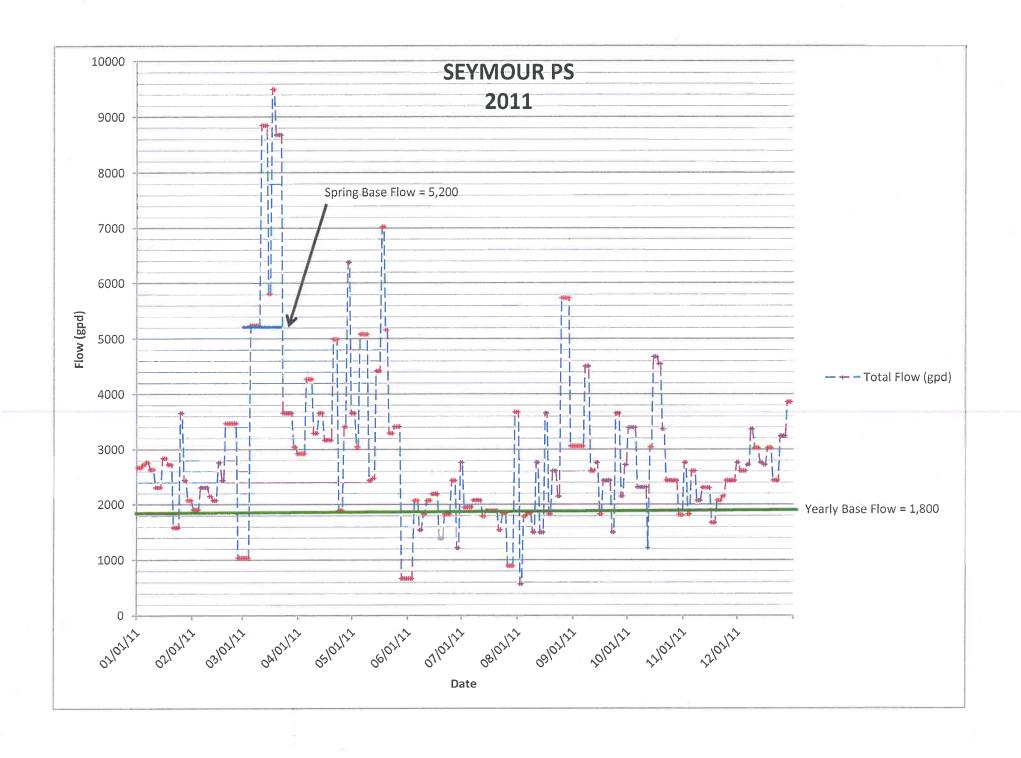


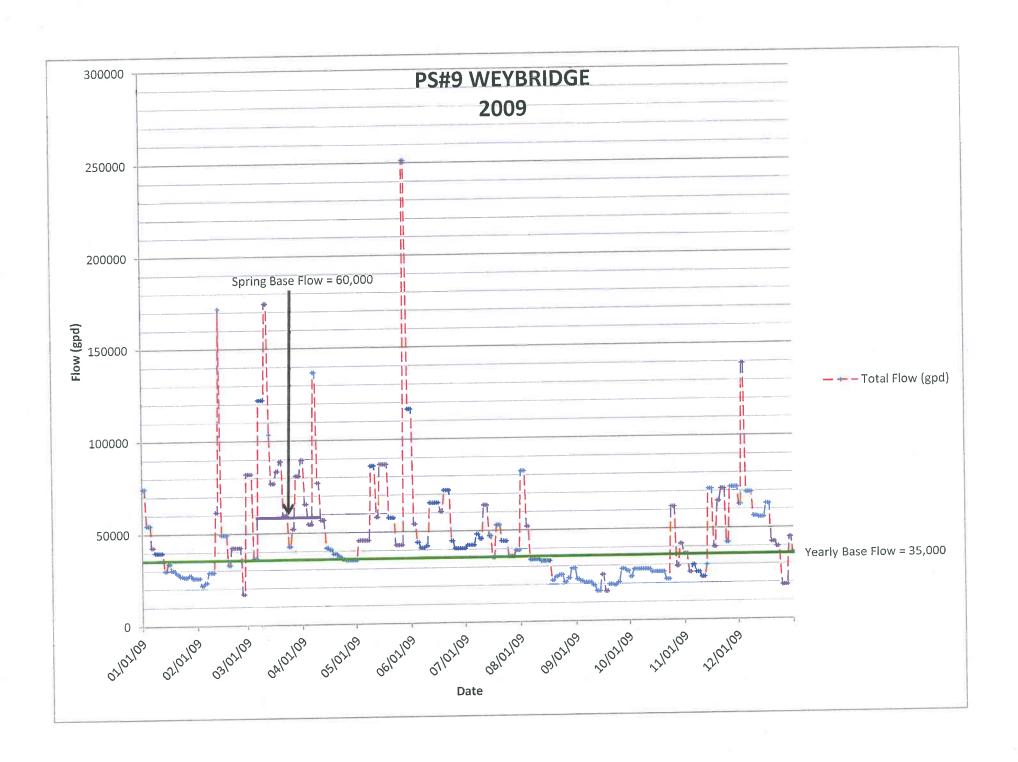


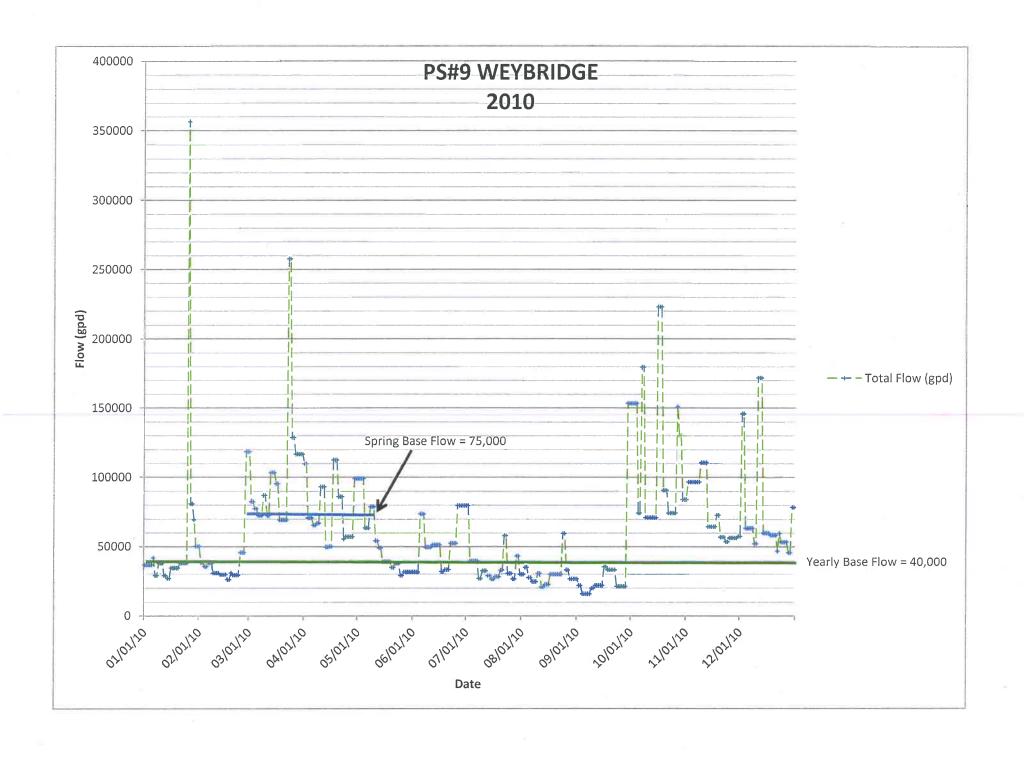


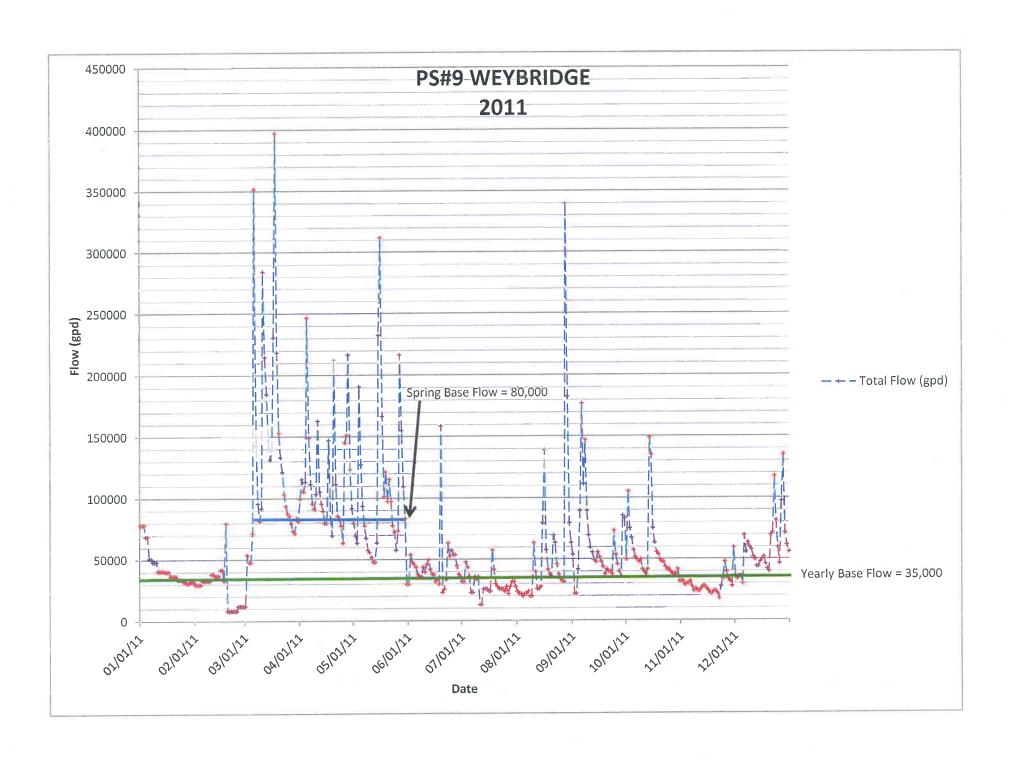


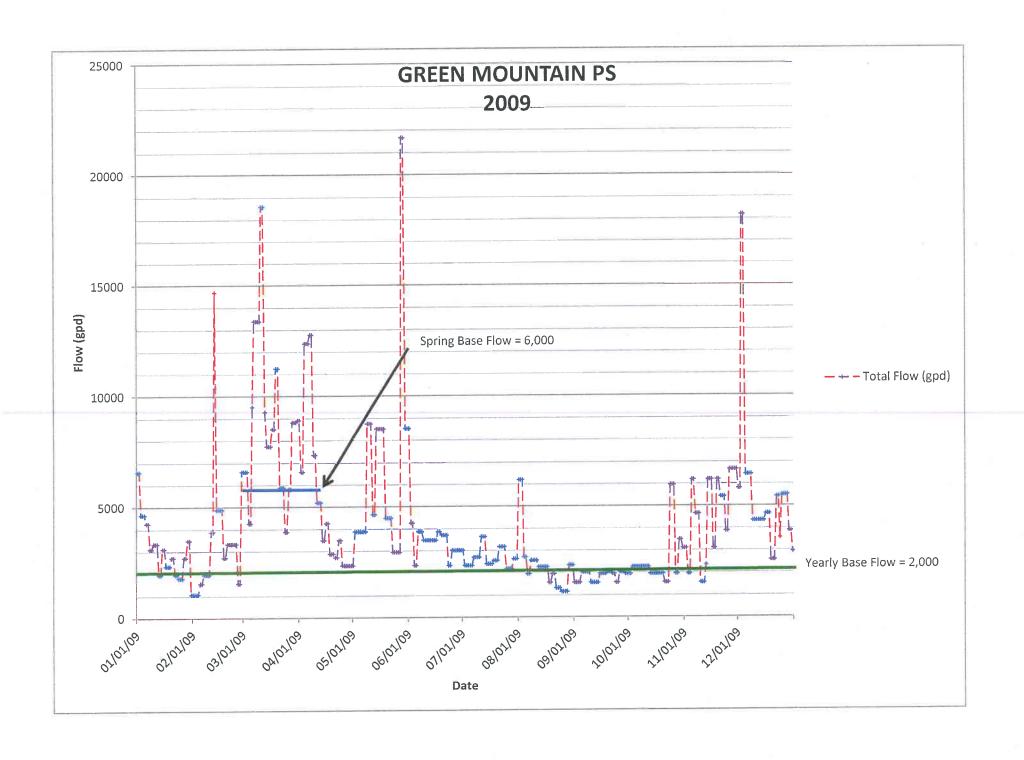


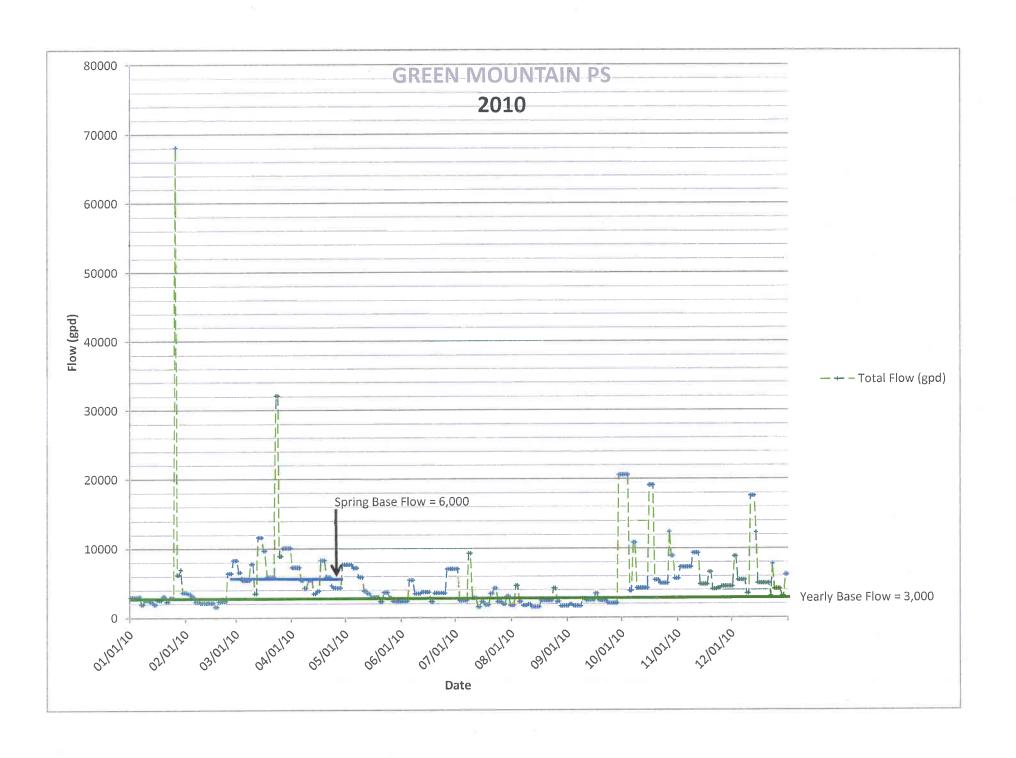


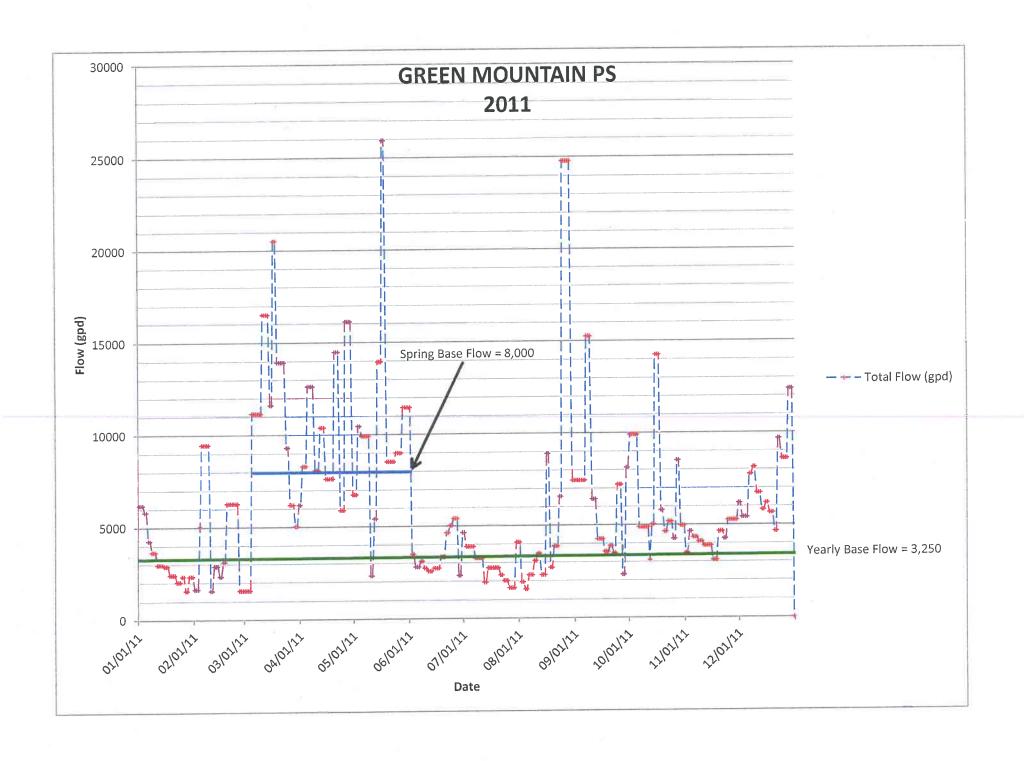


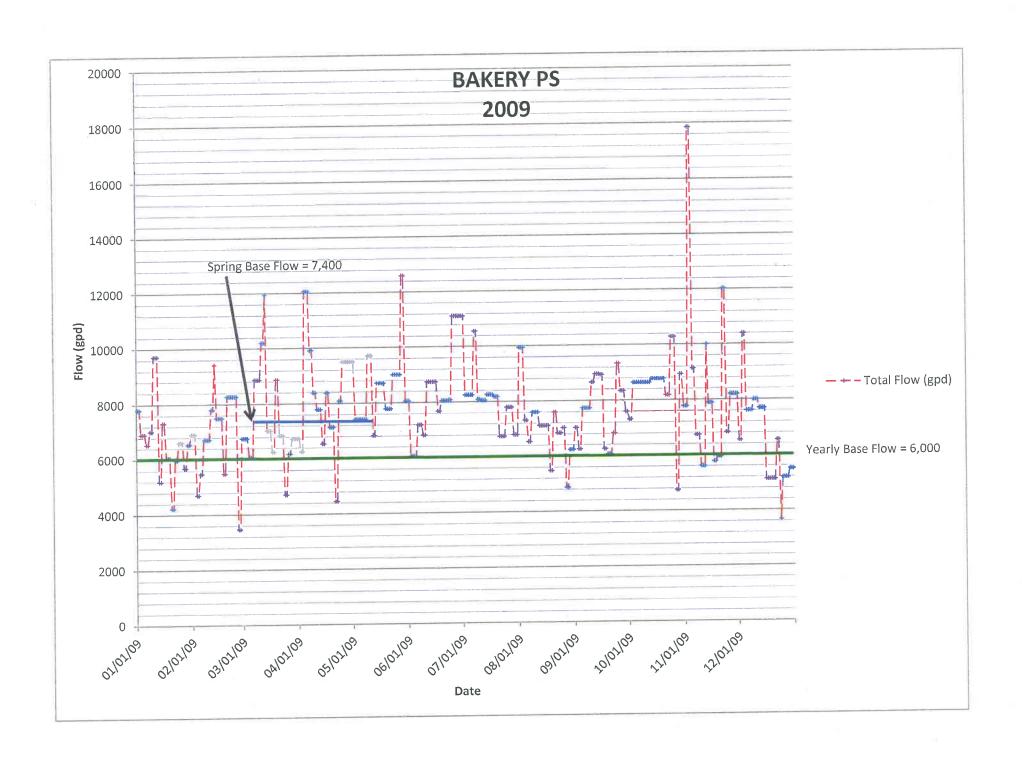


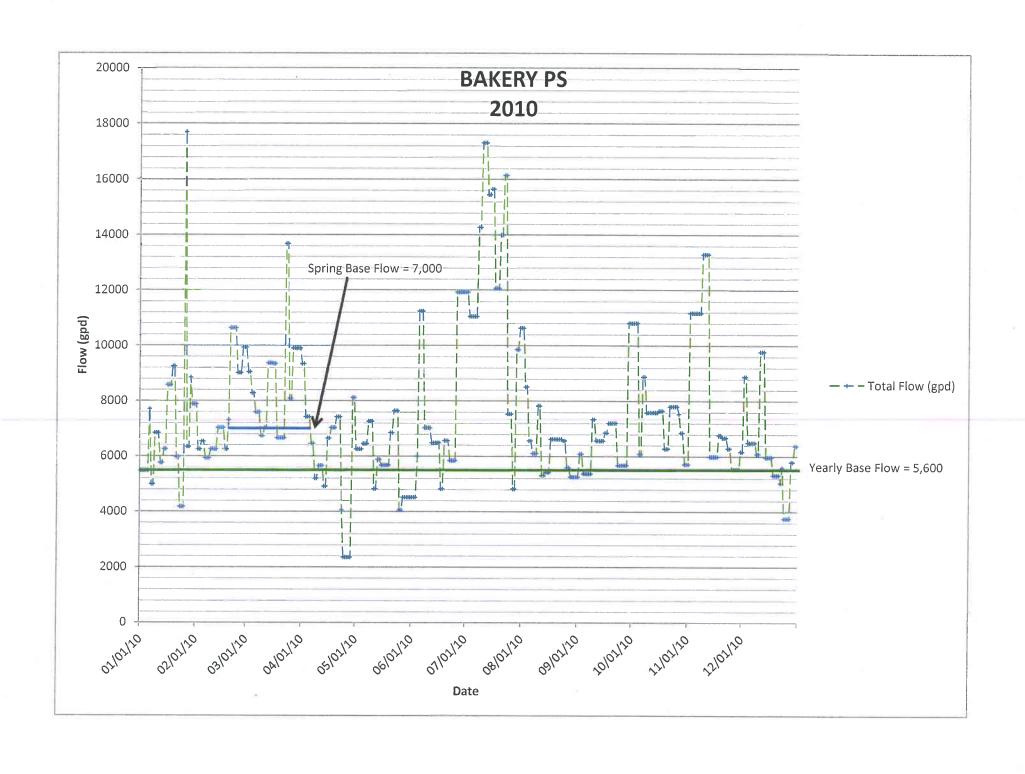


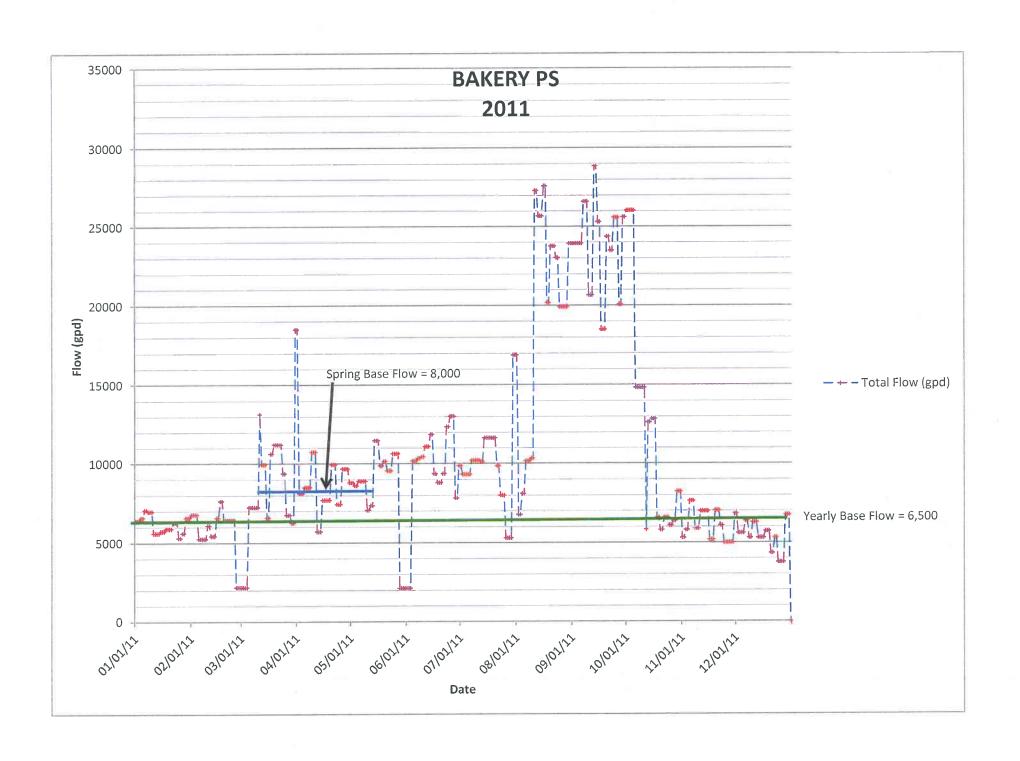


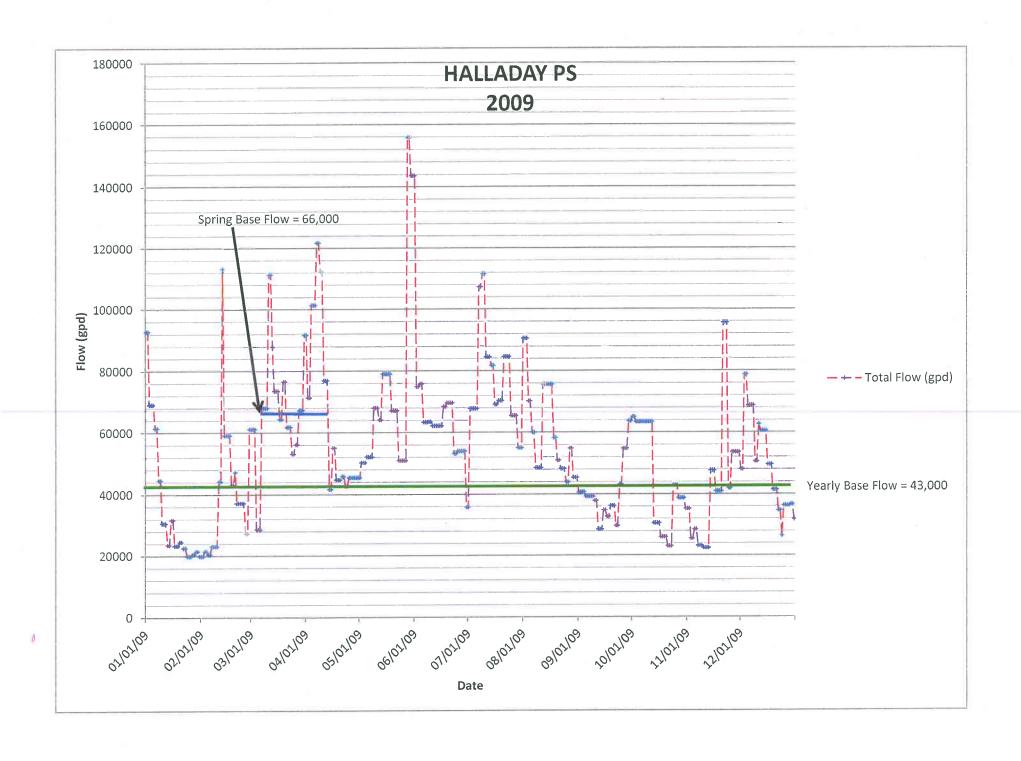


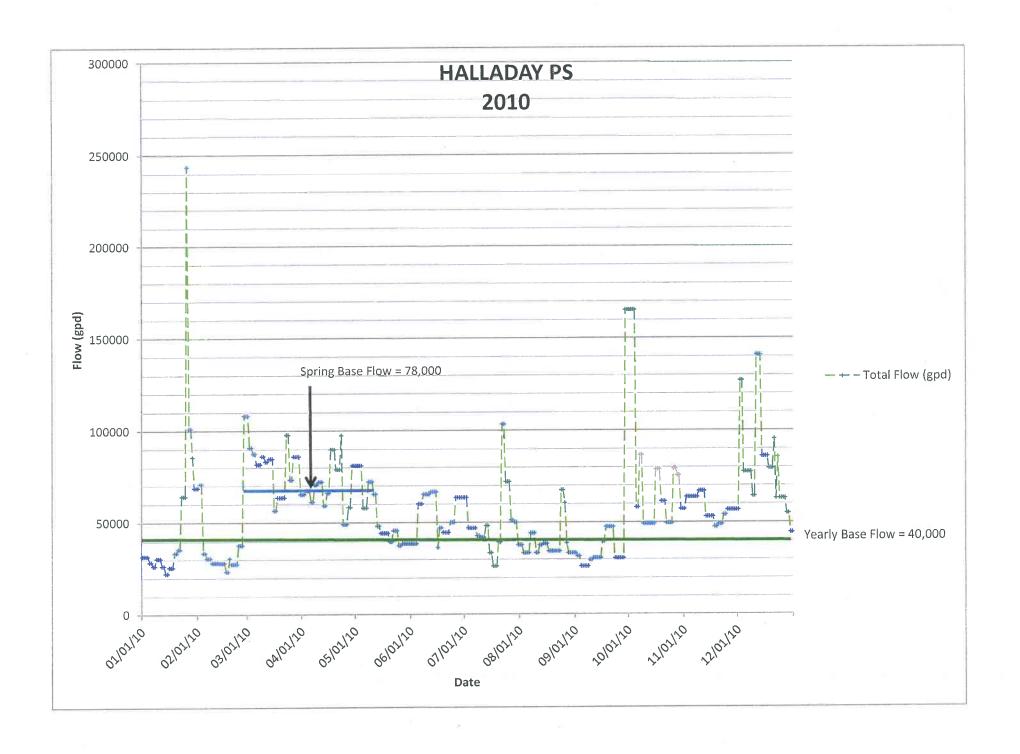


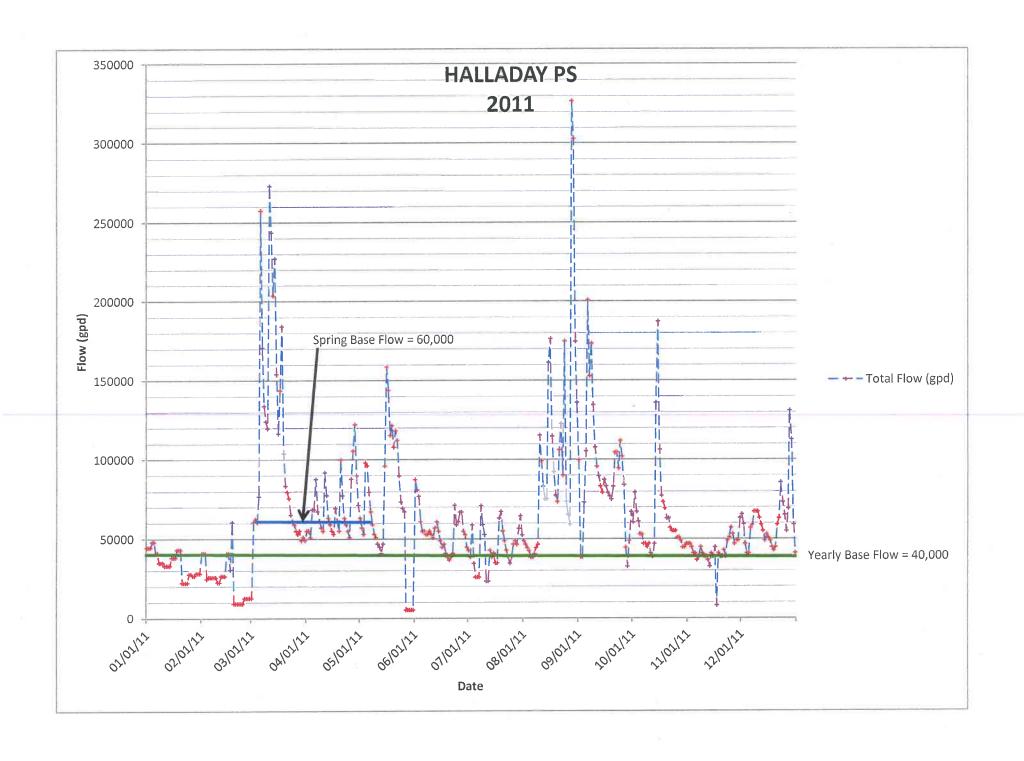


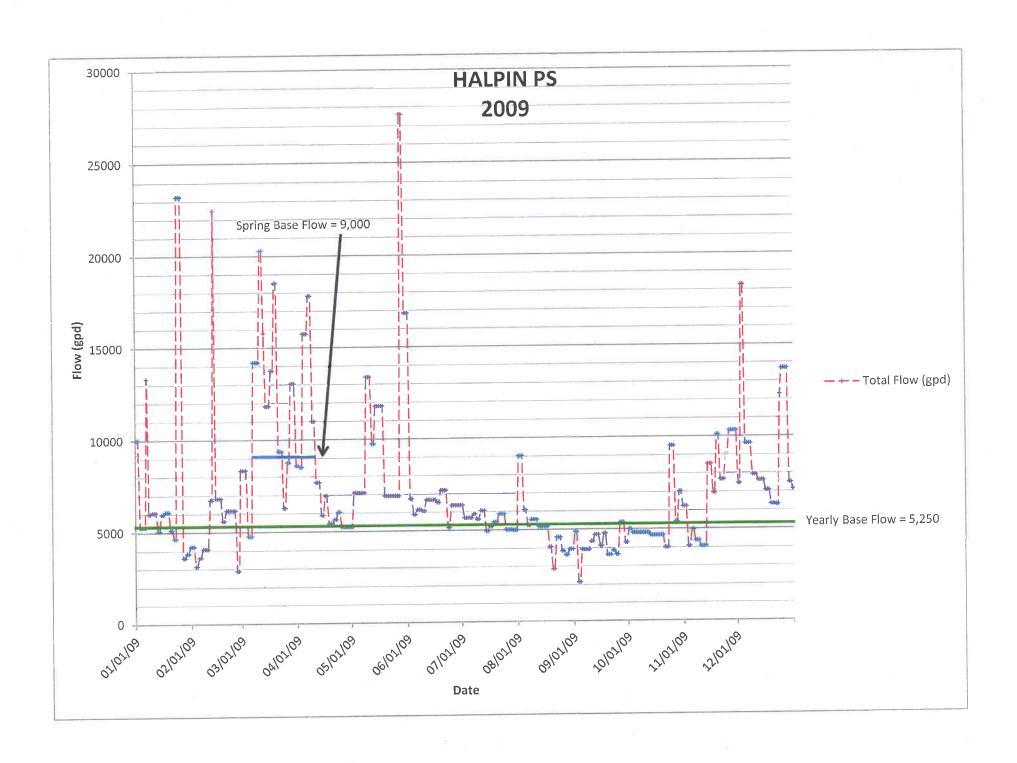


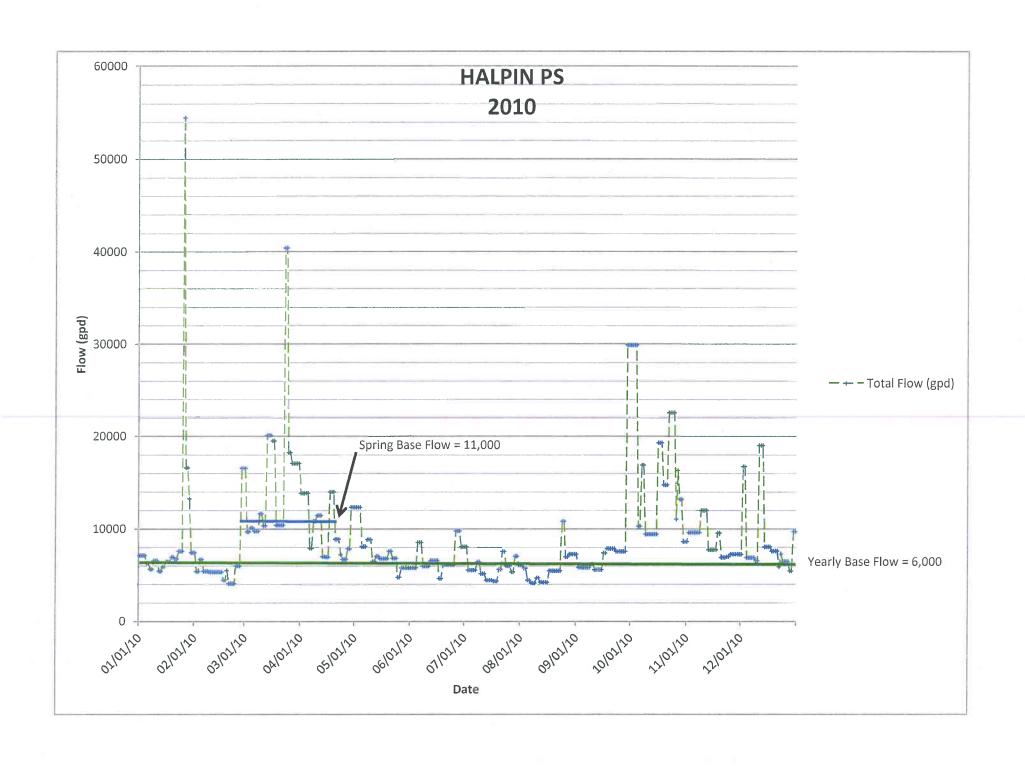


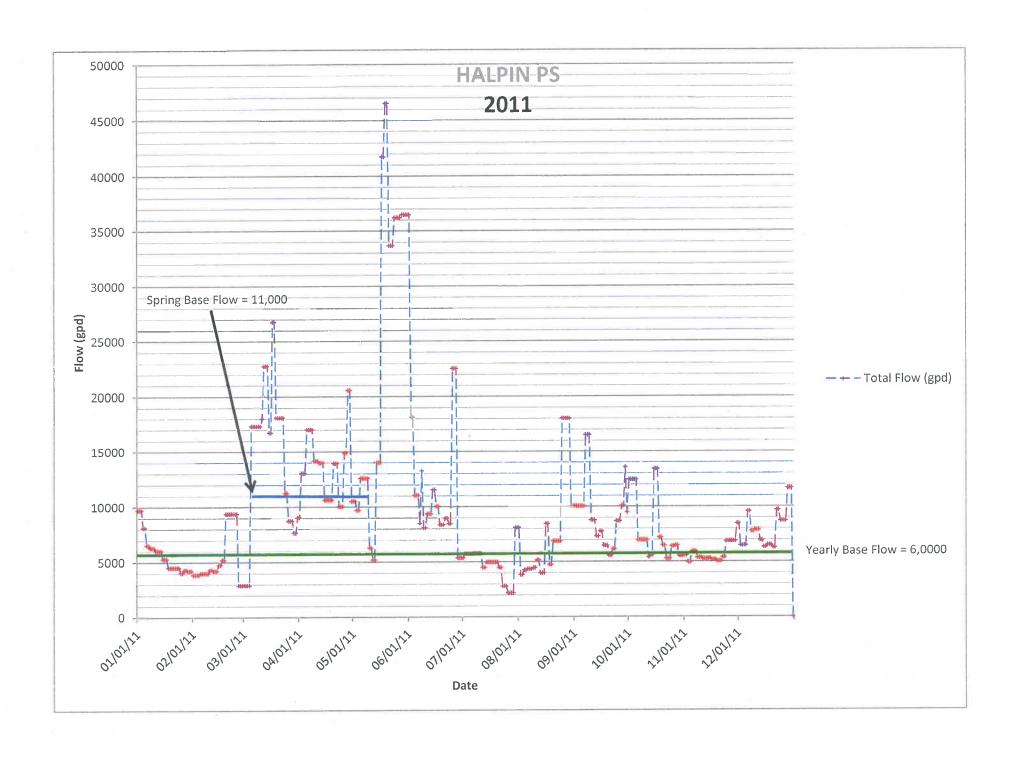


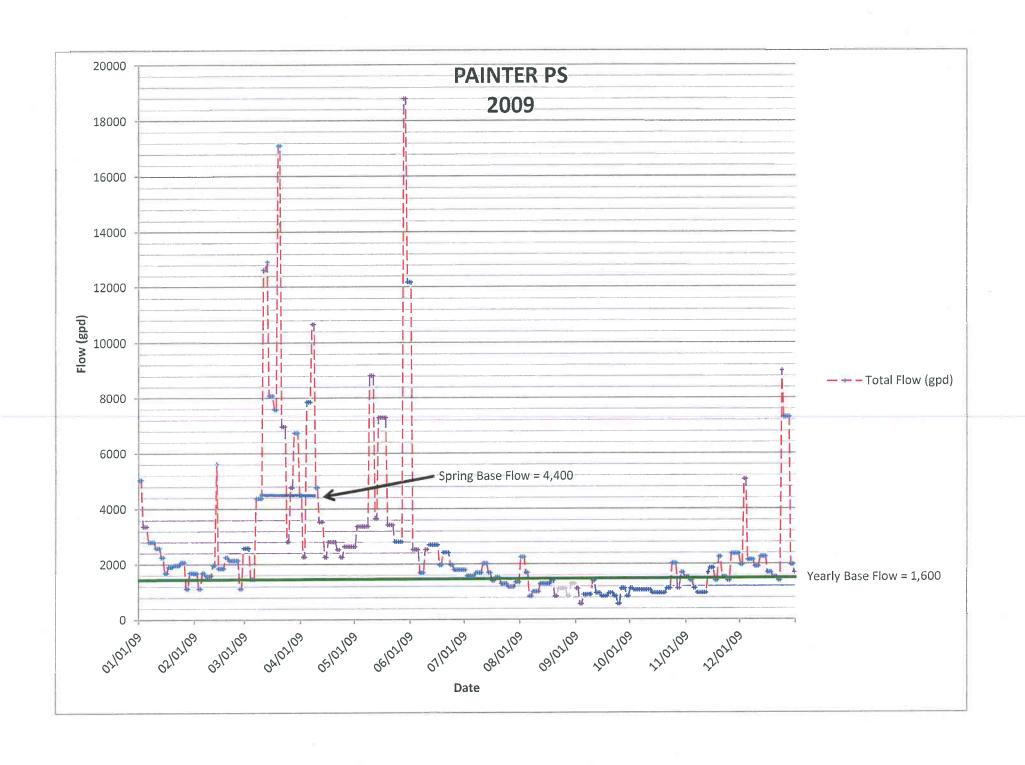


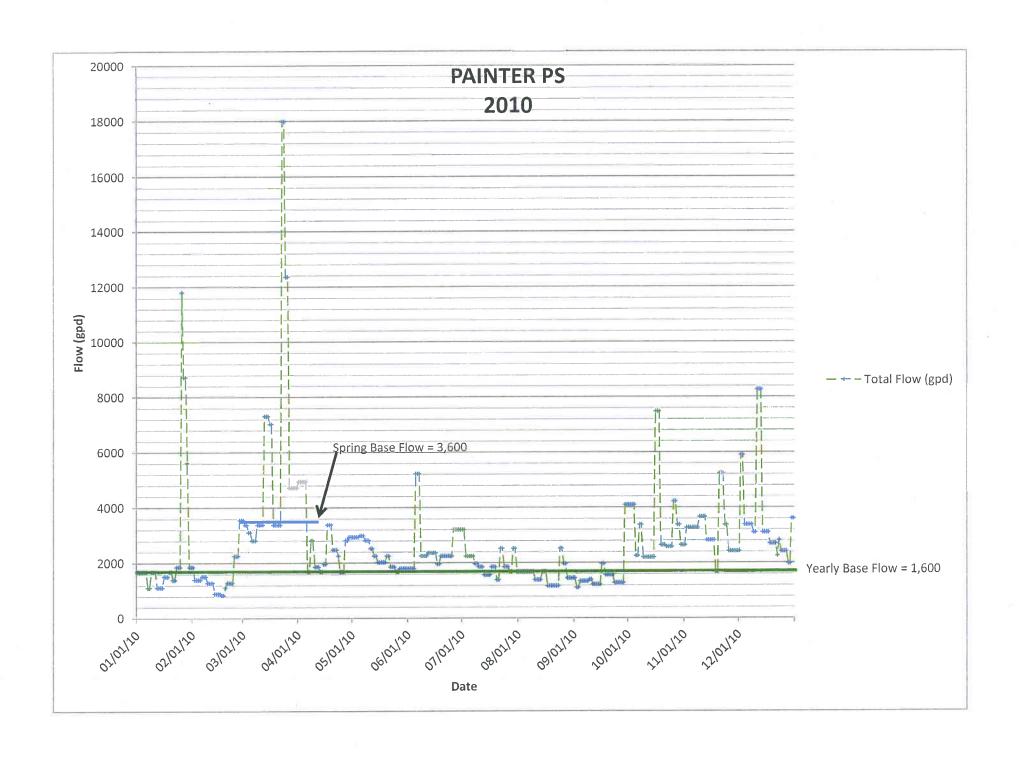


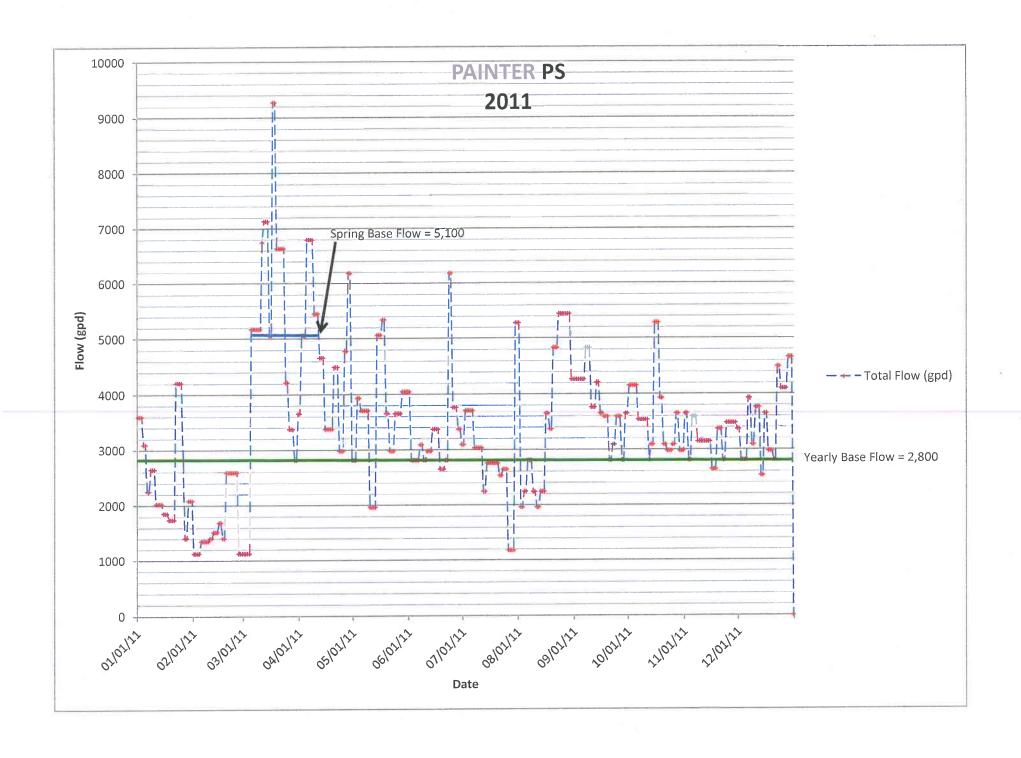


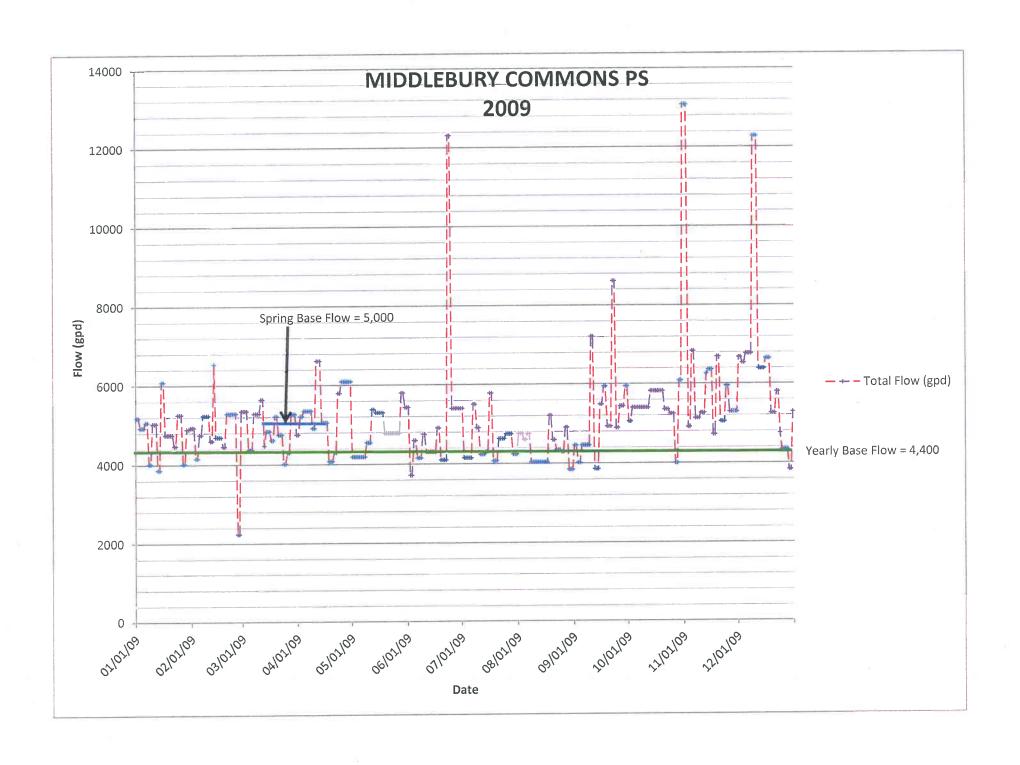


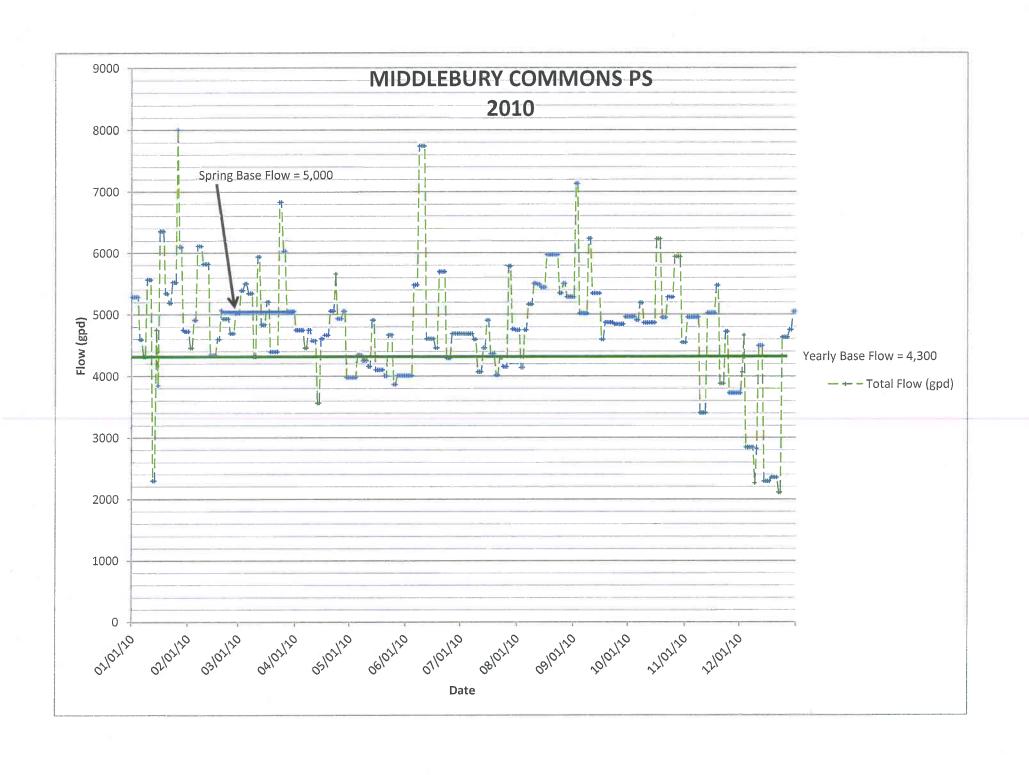


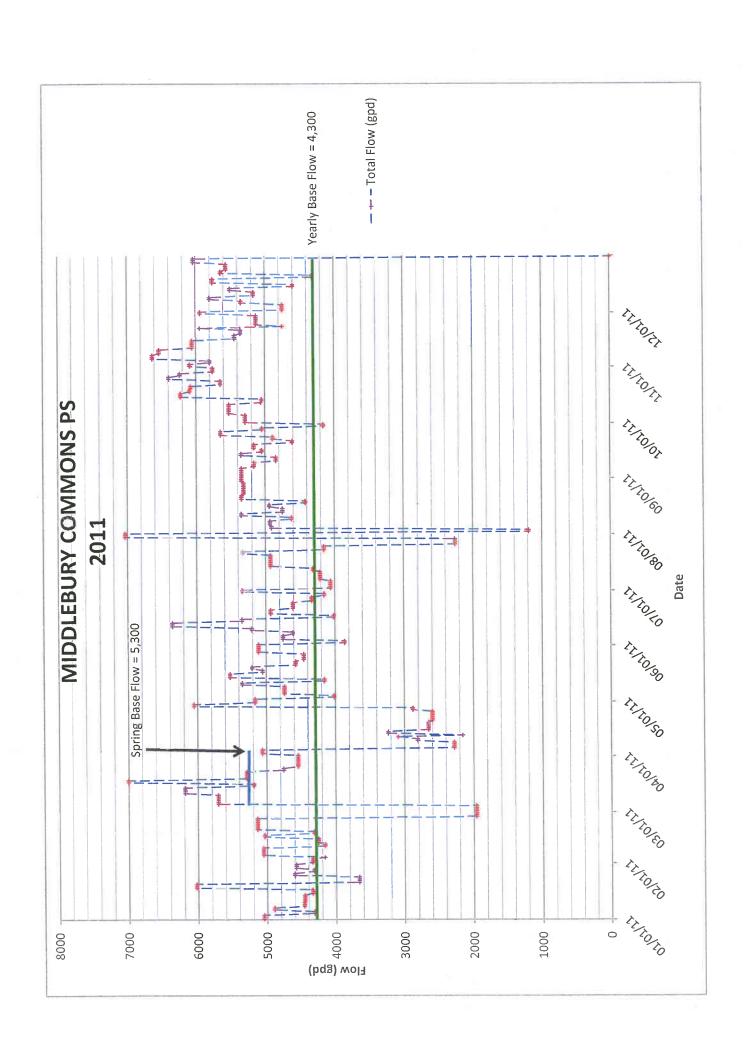


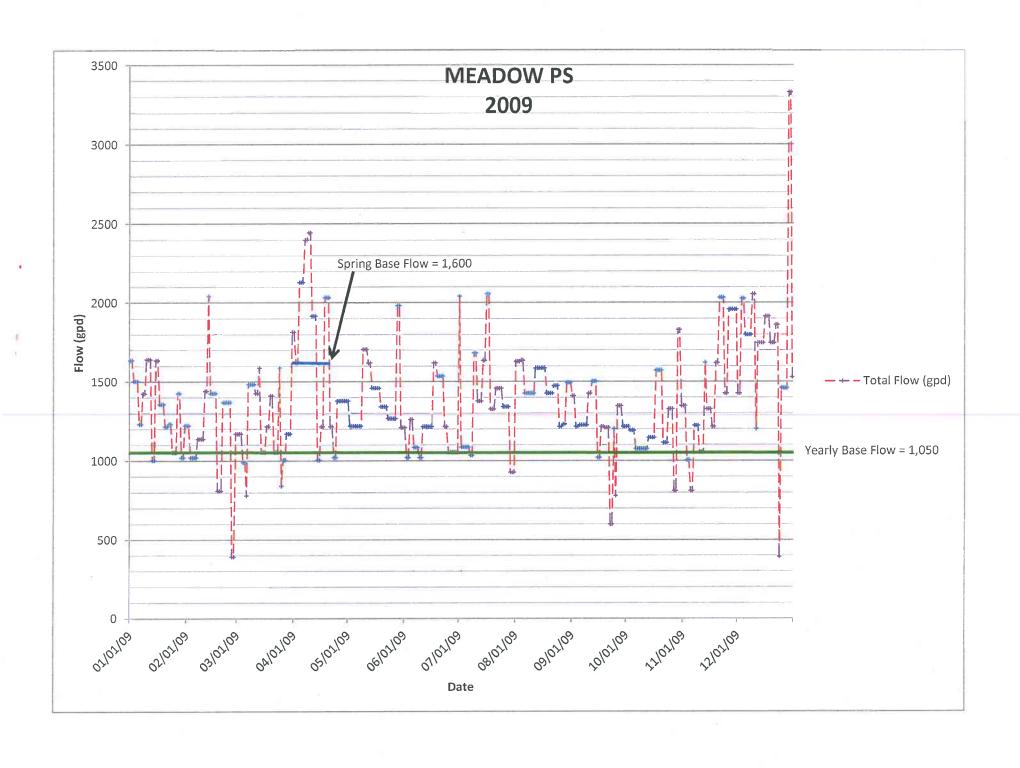


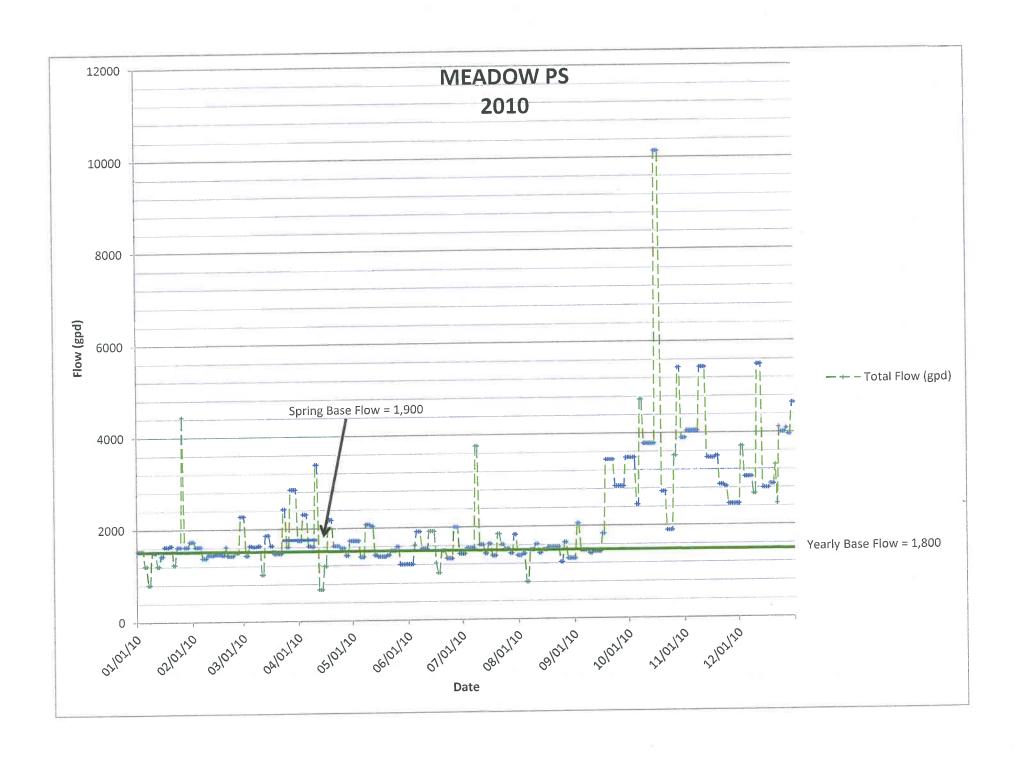


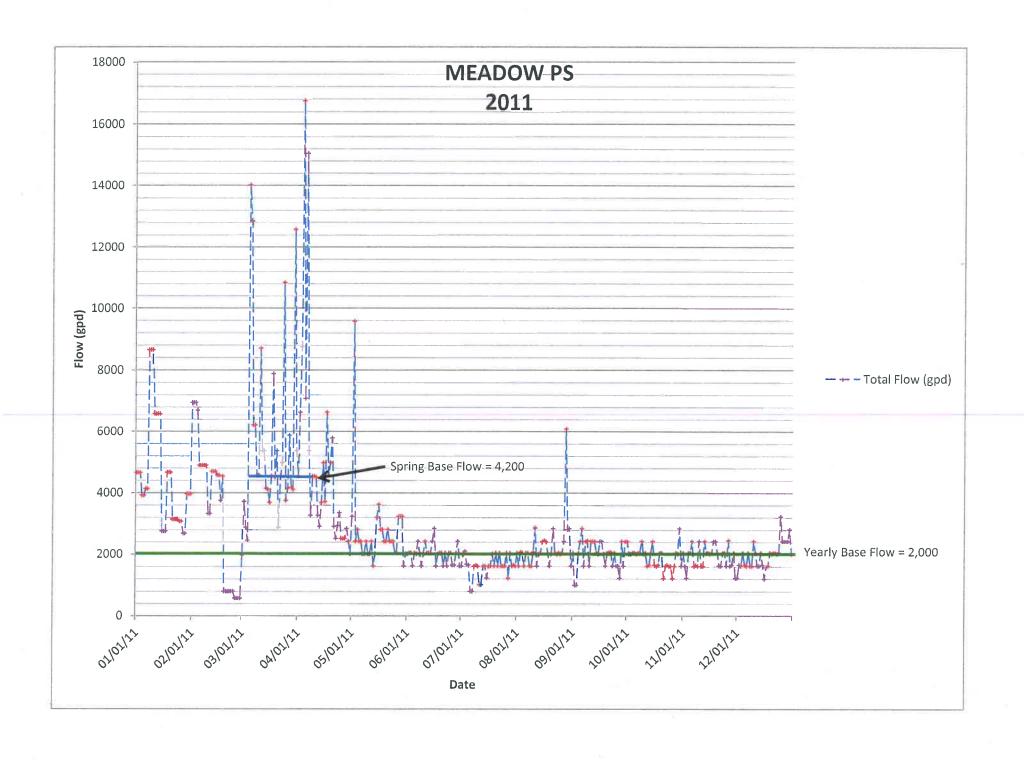


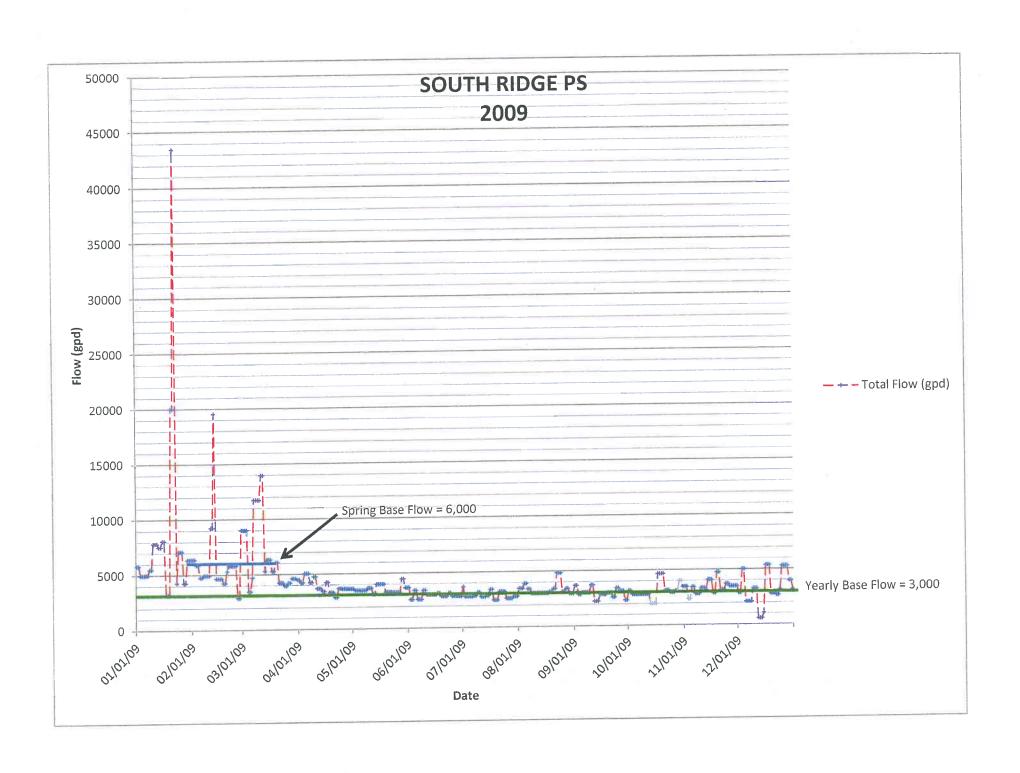


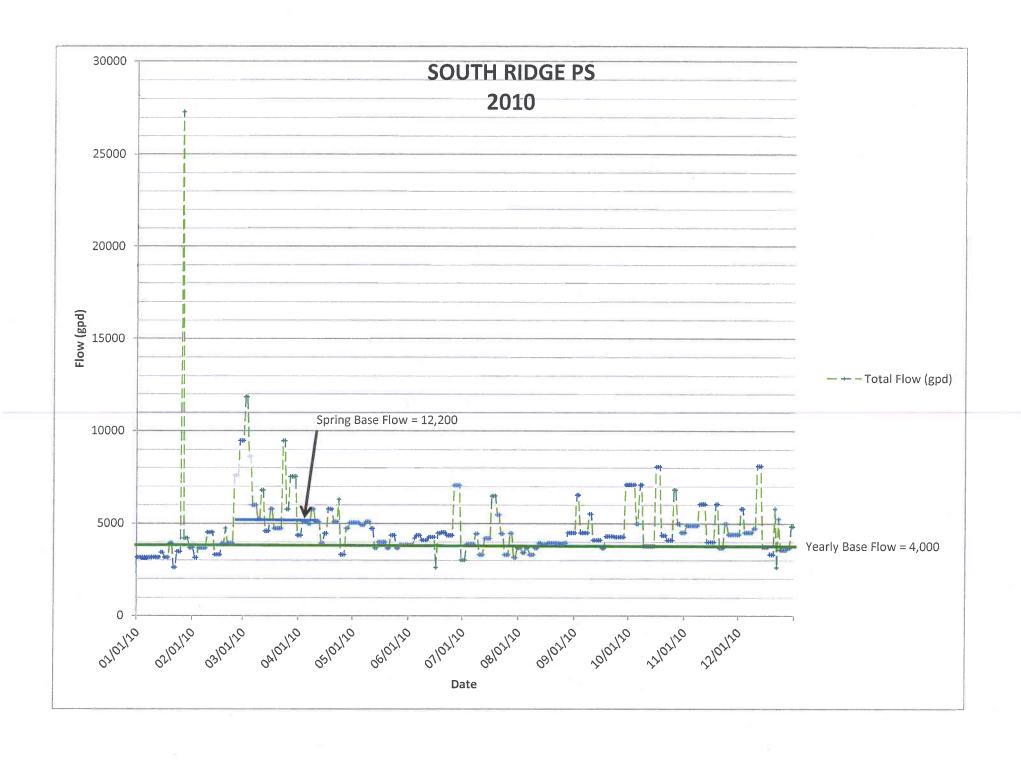


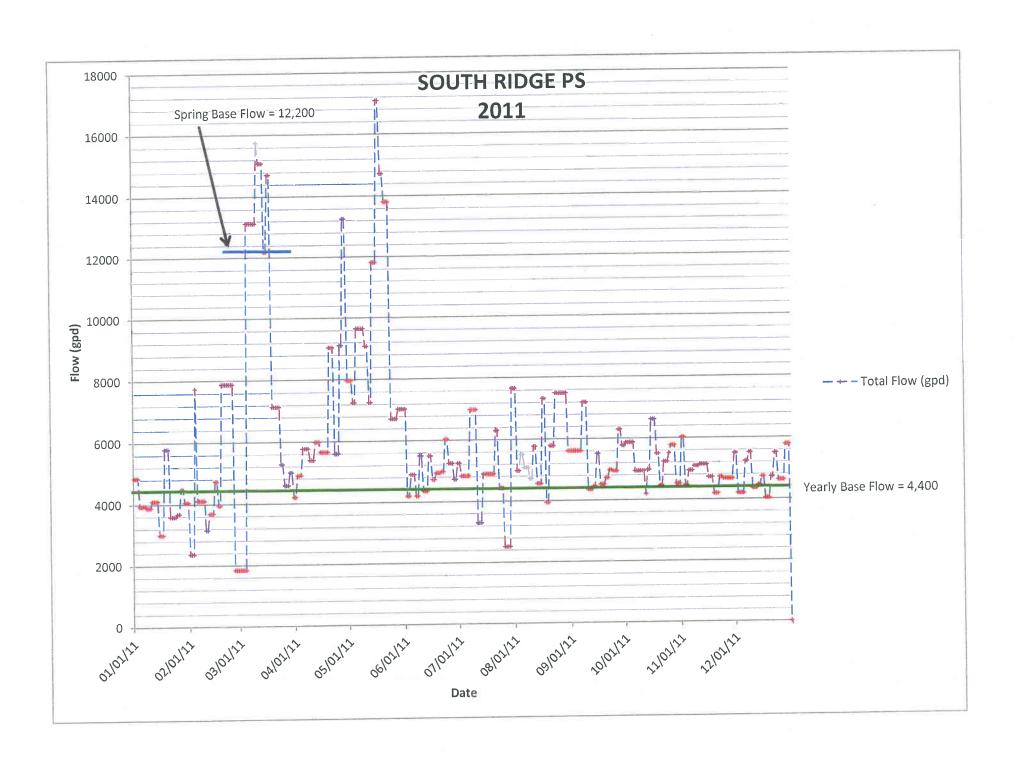












APPENDIX C

1ST NIGHT FLOW GAUGING DATA APRIL11, 2013

TOWN OF MIDDLEBURY SEWER SYSTEM EVALUATION STUDY HIGH SCHOOL PUMP STATION INFILTRATION ANALYSIS (NIGHT OF April 11, 2013)

			DOWNSTREAM MEASURED	UPSTREAM MEASURED	I	PIPE	PIPE	PIPE	INFILTRATION	
		PIPELINE	FLOW	FLOW	FLOW	DIAMETER	LENGTH	AREA	FLOW	
SUBAREA / MANHOLE	STREET	SEGMENT	(GPD)	(GPD)	(GPD)	(INCHES)	(FEET)	(IN-MILE)	(Gal/day / inmile)	NOTES
0655	Buttolph Drive	0655 / 0659	13,460	11,705	1,755	8	230	0.3	5,036	TV
0000	Dattoph Drive	00007 0000	10,400	11,700	1,700		200	0.0	0,000	
		0655 / Monroe Street	1,064	0	1,064	8	795	1.2		
		·				6	165			
						4	280			
						Total	1,240	1.6	663	Good
0659	Buttolph Drive	0659 / Swange StWoodland Park	11,590	0	11,590	8	5,020	7.6		
0009	Buttoipri Drive	0659 / Swange StWoodland Park	11,590	0	11,590	6	395			
						Total	5,415		1,439	Measure 0659 & 0701
		0659 / 0644	115	0	115	8	3,180			
						6	125			
						Total	3,305	5.0	23	Good
0070	Object of Assessment	0070 / 0074	000		000		705	1.0	010	Cood
0673	Charles Avenue	0673 / 0674	260	0	260	8	785	1.2	219	Good
		0673 / 0677	25,160	22,070	3,090	12	210	0.5		
		30.07.3077	20,100		0,000	6	570			
						4	180			
	"					Total	960	1.3	2,450	TV
0677	US Rte 7 / Charles Avenue	0677 / 0693 (End of US Rte. 7)	22,070	20,510	1,560	10				
						8	1,020			
		+				Total	45 1,125		021	Good
	<u> </u>					Total	1,123	1.7	321	1000
		0677 / 0647 (End of US Rte 7)	0	0	0	10	485	0.9		
						8	310			
						Total	795	1.4	0	Good
0682	HS PS	0682 / 0658	1,064	0	1,064					
						6				
						Total	50 990		803	Good
						Total	330	1.5	303	
		0682 / 0681	4,690	0	4,690	8	385	0.6	8,040	TV
		0682 / 0673	32,000	25,420	6,580	1				
	1					6	360			
<u> </u>						Total	50 835		4,657	TV
						Total	835	1.4	4,057	l v
0693	Monroe Street CC	0693 / 0655	20,510	14,524	5,986	8	1,305	2.0		
- 5555	institute direct de	25507 5555	20,010	14,024	0,000	6	365			,
						Total	1,670		2,502	Measure 0693, 0691 & 0655
		0693 / Overbrook Dr	0	0	0	8	535			W.A. West
						6	310			
						Total	845	1.2	0	Good

TOWN OF MIDDLEBURY SEWER SYSTEM EVALUATION STUDY PUMP STATION #6 INFILTRATION ANALYSIS (NIGHT OF April 11, 2013)

	1		DOWNSTREAM	LIDSTDEAM		Ī				
			MEASURED	MEASURED	CECMENT	PIPE	PIPE	PIPE	INFILTRATION	
		PIPELINE	FLOW	FLOW		DIAMETER		AREA	FLOW	
OUDADEA /AAANIJOLE	OTREET	l l				1			(Gal/day / inmile)	NOTES
SUBAREA / MANHOLE	STREET	SEGMENT	(GPD)	(GPD)	(GPD)	(INCHES)	(FEET)	(IIV-IVIILE)	(Gai/day / IIIIIIIle)	NOTES
00.004	Cominant Street	OC 001 / End Forbos Cirols	10.460		10.460	8	2,378	3.6		
06-001	Seminary Street	06-001 / End Forbes Circle	13,460	- 0	13,460	6	652	0.7		
				<u></u>		4	100	0.1		
						Total	3,130	4.4	3,045	Measure 06-003 & 06-007
06-014	Seminary Street	06-014 / 06-021	37,550	35,917	1,633	8	85	0.1	12,680	πν
		06-014 / 06-024	4,690	0	4,690	8	1,600	2.4	1,935	TV
06-021	Seminary Street	06-021 / 06-028	35,860	23,078	12,782	8	1,326	2.0	6,362	Measure 06-021, 06-026 & 06-028
		06-021 / End of Seminary St. Ext.	57	0	57	8	440	0.7	86	Good
06-028	Washington Street	06-028 / End of Peterson Terr.	3,689	0	3,689	8	1,538	2.3	1,583	Good
		00 000 / 00 040	10.000	10.707	000	8	384	0.6	1.005	Good
		06-028 / 06-040	19,389	18,787	602	8	384	0.6	1,035	G000
06-039	Washington Street	06-039 / End of Colonial Dr.	3,689	0	3,689	8	830	1.3	2,933	TV
00-039	Washington Street	00-0397 End of Colonial Dr.	3,009		3,009	-	000	1.0	2,300	
		06-039 / 06-044	9,243	0	9,243	8	1,790	2.7	3,408	Measure 06-039 & 06-046
							.,			
06-040	Washington Street	06-040 / 06-039	18,730	12,932	5,798	8	117	0.2	32,707	TV
		06-040 / 06-041	57	0	57	8	625	0.9	60	Good
									412	
		06-040 / ????	0	0	0	8	0	0.0	0	Good

TOWN OF MIDDLEBURY SEWER SYSTEM EVALUATION STUDY PUMP STATION #9 INFILTRATION ANALYSIS (NIGHT OF April 11, 2013)

						T LEWEL	· · · · · · · · · · · · · · · · · · ·	r -		T STATE OF THE STA
			DOWNSTREAM		l					
			MEASURED	MEASURED			PIPE	PIPE	INFILTRATION	
		PIPELINE	FLOW	FLOW	FLOW	DIAMETER	LENGTH	AREA	FLOW	
SUBAREA / MANHOLE	STREET	SEGMENT	(GPD)	(GPD)	(GPD)	(INCHES)	(FEET)	(IN-MILE)	(Gal/day / inmile)	NOTES
										ul-transf
09-002W	Pulp Mill Bridge Road	09-002W / Otter Creek Lane	<57	0	<57		790			
						6				
						Total	825	1.2	<46	***************************************
		09-002W / 09-005W	57	57	0	8	150	0.2	0	
09-005W	Pulp Mill Bridge Road	09-005 W / 09-012W	0	0	0	8	190			
						4	200	0.2		
						Total	390	0.4	0	
		09-005W / 09-013W (End)	0	0	0	6	820	0.9	0	
		09-005W / 09-006W (End)	57	0	57	8	930	1.4		
						6	120	0.1		
		11.00				4	120	0.1		
						Total	1,170	1.6	35	
09-003	Weybridge Street	09-003 / 09-002W	3,032	57	2,975	8	770	1.2	2,550	τv
					, , , , , , , , , , , , , , , , , , ,					
09-011	Weybridge Street	09-011 / 09-012	0	0	0	4	410	0.3	0	
00 011	Troyonago octoot	33 3117 33 312								
	<u> </u>	09-011 / 09-017	1,458	0	1,458	8	635	1.0	1,515	ΤV
			.,		1,100					
		09-011 / 09-013	22,070	21,753	317	10	270	0.5	620	
		333,33310	1		<u> </u>					
09-013	Weybridge Street	09-013 / 09-023	5,473	0	5,473	8	3,980	6.0		
00°010	11 Cybridge Circuit	00 0107 00 020	3,470	†	,,,,,	6				
				<u> </u>	<u> </u>	1 4	2,475	1.9		111111111111111111111111111111111111111
						Total	7,455			<u> </u>
						10101	7,-100	1 3.0		
		09-013 / 09-014	16,280		16,280	10	375	0.7		
		09-013 / 09-014	10,200	l	10,200	8				
						Total		1.3		l _{TV}
				 		Total	1 90	1.3	12,130	
						 	 	 		
				l		l	<u> </u>	L	l	l

TOWN OF MIDDLEBURY SEWER SYSTEM EVALUATION STUDY PUMP STATION #12

INFILTRATION ANALYSIS (NIGHT OF April 11, 2013)

			DOWNSTREAM	UPSTREAM						
			MEASURED				PIPE	PIPE	INFILTRATION	
		PIPELINE	FLOW	FLOW		DIAMETER		AREA	FLOW	
SUBAREA / MANHOLE	STREET	SEGMENT	(GPD)	(GPD)	(GPD)	(INCHES)	(FEET)	(IN-MILE)	(Gal/day / inmile)	NOTES
12-001	Middle Road S	12-001 / 12-004	46,610	32,760	13,850	18	2,240	7.64	1,814	No Manholes
12-004	US Rte 7 / Middle Road S	12-004 / 12-005	3,320	2,270	1,050	8	90	0.14	7,700	TV
									,	
		12-004 / Unmarked	29,440	5,402	24,038	18	2,000	6.82	3,526	No Manholes
			ļ							
12-005	US Rte 7 / Foote St	12-005 / 12-006	2,270	0	2,270	8	170	0.26	8,813	TV
		12-005 / 12-007	0	0	0	8	78	0.12	0	Good
12-008	Cady Road	12-008 / 12-010	57	0	57	8	1,945	2.95		
						6	1,410			
			ļ			Total	3,355	4.55	13	Good
		12-008 / 07-67	1,064		1,064	0	1,735	2.63	405	Good
		12-000 / 07-07	1,004		1,004	•	1,733	2.03	403	Good
Unmarked	US Rte 7 / Cady Road	Unmarked / 12-008	4,960	1,121	3,839	8	500	0.76	5,067	TV
		Unmarked / 07-66	442	0	442	12				
						Total 8	980			Cood
						Total	2,520	4.98	89	Good
			 							

APPENDIX D

2ND NIGHT FLOW GAUGING DATA MAY 1, 2013

TOWN OF MIDDLEBURY SEWER SYSTEM EVALUATION STUDY HIGH SCHOOL PUMP STATION INFILTRATION ANALYSIS (NIGHT OF May 1, 2013)

			DOWNSTREAM MEASURED	UPSTREAM MEASURED	SEGMENT	PIPE	PIPE	PIPE	INFILTRATION	
		PIPELINE	FLOW	FLOW		DIAMETER		AREA	FLOW	
UDADEA (AAANUIOLE	OTREET	SEGMENT	(GPD)	(GPD)	(GPD)	(INCHES)	(FEET)		(Gal/day / inmile)	NOTES
UBAREA / MANHOLE	STREET	SEGMENT	(GPD)	(GPD)	(GPD)	(INCHES)	(FEE1)	(IIV-IVIILE)	(Gai/day / IIIIIIIe)	NOTES
			10.440	10.100	4 040		000	0.3	4,643	TV
0655	Buttolph Drive	0655 / 0659	18,110	16,492	1,618	8	230	0.3	4,043	I V
							705	4.0		
-1		0655 / Monroe Street	<57	0	<57	1	795			
****						6	165			
						4	280			
						Total	1,240	1.6	<5/	Good
						ļ				
0659	Buttolph Drive	0659 / 0701	13,460	6,208	7,252	8	330	0.5	14,504	TV

		0659 / 0644	3,032	0	3,032	8	3,180			
						6	125			
						Total	3,305	5.0	611	Good
0701	Swanage Court	0701 / 0101	735	0	735	8	1,390	2.1	349	Good
		0701 / 0092	5,473	0	5,473	8	3,015	4.6		
1,170						6	580			
						Total	3,595	5.2	1,047	Good
							-			
0690	Monroe Street CC	0690 / 0655	18,110	18,110	0	8	235	0.4	0	

MIGT.		0690 / 0654	C	0	0	8	805	1.2	0	
						1				
0693	Monroe Street CC	0693 / 0655	28,640	18,110	10,530	8	225	0.3		
0000	Missings Chool GS			,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	6				
						Total				TV
						1				
		0693 / Overbrook Dr		0	0	8	535	0.8		
		GOOG / GVOIDIOOK DI	1	1	<u> </u>	6				
, <u></u> .						Total				
					 	1.514	1 340	1.2	· ·	

TOWN OF MIDDLEBURY SEWER SYSTEM EVALUATION STUDY PUMP STATION #6

INFILTRATION ANALYSIS (NIGHT OF May 1, 2013)

			DOWNSTREAM	LIPSTREAM			T	1		
			MEASURED	MEASURED	SEGMENT	PIPE	PIPE	PIPE	INFILTRATION	
		PIPELINE	FLOW	FLOW		DIAMETER	1	AREA	FLOW	
SUBAREA / MANHOLE	STREET	SEGMENT	(GPD)	(GPD)	(GPD)	(INCHES)		1	(Gal/day / inmile)	NOTES
BODATILA / WANTOLL	T T	0202.	(3 5)	(9.1. 2 /	(4 /			1	<u>'</u>	
06-003	Seminary Street Ext.	06-003 / 06-005	1,064	464	600	8	730	1.1	542	Good
00 000	Community Chrost Extra		.,							
06-005	Valley View Drive	06-005 / Seminary St.	0	0	0	6	N/A	N/A	0	
		06-005 / East Road	0	0	0	8	N/A	N/A	0	
		06-005 / 06-006	464	0	464	8	555	0.8	552	Good
06-007	Evergreen Lane	06-007 / 06-011	0	0	0	<u> </u>				
						6				
						Total	75 825			
						Total	623	1.1		
		06-007 / 06-013	 	 	0	8	305	0.5		
		00-007 / 00-013		<u> </u>		6				
						Total				
									-	
06-025	Cross Country	06-025 / 06-028	9,243	6,539	2,704	. 8	1,000	1.5	1,785	TV
06-028	Cross Country	06-028 / 06-029	1,064	0	1,064	. 8	1,538	2.3	457	Good
		06-028 / 06-039	5,475	5,475	0	8	505	0.8	0	
06-039	Washington Street	06-039 / 06-048	<57	0	<57	8	830	1.3	<57	Good
									205	Cond
		06-039 / 06-046	5,475	4,690	785	8	745	1.1	695	Good
	Washington Observe	00.040./00.050	4.000		4 000		415	0.6	7,459	TV
06-046	Washington Street	06-046 / 06-052	4,690	0	4,690	8	415	0.6	7,458	I V
		06-046 / 06-047	<57		<57	8	270	0.4		Good Good
		00-040 / 00-047	<57		<57	 °	270	0.4	237	
		<u> </u>		<u> </u>	L	<u> </u>	<u> </u>	I.	<u> </u>	

TOWN OF MIDDLEBURY SEWER SYSTEM EVALUATION STUDY PUMP STATION #9 INFILTRATION ANALYSIS (NIGHT OF June 6, 2013)

			DOWNSTREAM MEASURED			PIPE	PIPE	PIPE	INFILTRATION	
		PIPELINE	FLOW	FLOW	FLOW	DIAMETER		AREA	FLOW	
SUBAREA / MANHOLE	STREET	SEGMENT	(GPD)	(GPD)	(GPD)	(INCHES)	(FEET)	(IN-MILE)	(Gal/day / inmile)	NOTES
09-001W	Pulp Mill Bridge Road	09-001W / 09-002W	464	0	464	8	2,060	3.1		
						6	975	1.1		
						4	320	0.2		
						Total	3,355	4.5	104	
		09-001W / Pulp Mill Bridge	0	0	0	8	N/A	N/A	0	Stub

APPENDIX E

3RD NIGHT FLOW GAUGING DATA JUNE 6, 2013

TOWN OF MIDDLEBURY SEWER SYSTEM EVALUATION STUDY PUMP STATION #6 INFILTRATION ANALYSIS (NIGHT OF June 6, 2013)

			DOWNSTREAM	LIPSTREAM		<u> </u>	<u> </u>			Marie de la companya
			MEASURED	MEASURED		PIPE	PIPE	PIPE	INFILTRATION	
		PIPELINE	FLOW	FLOW		DIAMETER		AREA	FLOW	
SUBAREA / MANHOLE	STREET	SEGMENT	(GPD)	(GPD)	(GPD)	(INCHES)			(Gal/day / inmile)	NOTES
OOD/((E/// W/(VIIOEE]	1	<u> </u>		
06-001	Seminary Street Ext.	06-001 / 06-005	57	57	0	8	760	1.2	0	
06-005	Valley View Drive	06-005 / Seminary St.	0	0	0	6	N/A	N/A	_ 0	
		06-005 / East Road	0	0	0	8	N/A	N/A	0	
									00	
		06-005 / 06-007	57	0	57	8	555	0.8	68	
00.007	True years a Long	00.007./00.010				8	300	0.5		
06-007	Evergreen Lane	06-007 / 06-013	0		· · · · · · · · · · · · · · · · · · ·	6	200			
						4	75			
						Total			0	
										-
		06-007 / 06-011	0	0	0	8	590	0.9	0	
06-021	Cross Country	06-021 / 06-026	13,280	13,280	0	8	650	1.0	0	
	Seminary Street Ext.	06-021 / 06-023	<57	0	<57	8	440	0.7	<85	
06-026	Cross Country	06-026 / 06-028	13,280	12,960	320	8	665	1.0	318	
							N/A	N/A	0	
		06-026 / Washington	0	C	0	8	N/A	N/A	Ų	
00.000	Cross Country	06-028 / 06-029	1,440	114	1,326	8	400	0.6	2,188	
06-028	Cross Country	00-028 / 00-029	1,440	114	1,320		700	0.0	2,100	
		06-028 / End of Washington St	11,520	0	11,520	8	2,765	4.2	2,750	
		00 020 / 2.10 01 11 doi:g.tori 01	1.,,520		11,020			1		
06-029	Peterson Terrace	06-029 / 06-036	57	C	57	8	1,050	1.6		
						6				
						Total	1,350	1.9	30	
		06-029 / 05-029	57	C	57	8	360	0.5	105	
				<u> </u>		<u> </u>	<u> </u>			

TOWN OF MIDDLEBURY SEWER SYSTEM EVALUATION STUDY HIGH SCHOOL PUMP STATION INFILTRATION ANALYSIS (NIGHT OF JUNE 6, 2013)

			DOWNSTREAM	UPSTREAM						
			MEASURED	MEASURED	SEGMENT	PIPE	PIPE	PIPE	INFILTRATION	
		PIPELINE	FLOW	FLOW	FLOW	DIAMETER	LENGTH	AREA	FLOW	
SUBAREA / MANHOLE	STREET	SEGMENT	(GPD)	(GPD)	(GPD)	(INCHES)	(FEET)	(IN-MILE)	(Gal/day / inmile)	NOTES
0701	Cross Country / Woodland Park	0701 / 0092	13,460	3,032	10,428	8	360	0.5	19,118	
		0701 / 0095	3,032	57	2,975	8	890	1.3	2,206	
0092	Meadow Way	0092 / Heritage Circle	3,032	0	3,032	8	1,640	2.5	1,220	
		0092 / 0094	<57	0	<57	6	400	0.5	<114	
			_							
0095	Woodland Park	0095 / 0101	<57	0	<57	8	645	1.0	<57	
				L						

TOWN OF MIDDLEBURY SEWER SYSTEM EVALUATION STUDY PUMP STATION #12 INFILTRATION ANALYSIS (NIGHT OF June 6, 2013)

		PIPELINE	DOWNSTREAM MEASURED FLOW	UPSTREAM MEASURED FLOW		PIPE DIAMETER	PIPE	PIPE AREA	INFILTRATION FLOW	
SUBAREA / MANHOLE	STREET	SEGMENT	(GPD)	(GPD)	(GPD)	(INCHES)			(Gal/day / inmile)	NOTES
12-001	Middle Road S	12-001 / Unmarked # 1	37,960	21,710	16,250	20	650	2.46	6,600	
12 001										
Unmarked # 1	Middle Road S	Unmarked # 1 / 12-004	21,710	21,710	0	18	1,640	5.59	0	
12-004	US Rte 7 / Middle Road S	12-004 / 12-005	<57	0	<57	8	90	0.14	<407	
		12-004 / Unmarked # 2	21,710	19,090	2,620	18	1,200	4.09	640	
Unmarked # 2	US Rte 7	Unmarked # 2 / Unmarked # 3	19,090	19,090	0	18	800	2.73	0	
Unmarked # 3	US Rte 7	Unmarked # 3 / End of Cady Road	4,690	0	4,690	8	2,445	3.70		
Offinarked # 5	oo nie 7	Chinamou ii o'i Zina oi o'ady rioda	4,000	i	1,000	6	1,410			
						Total	3,855		884	
		Unmarked # 3 / 07-66	14,400	0	14,400	12				
						8 Total	980 2,520	1.48 4.98	2,289	

APPENDIX F MANHOLE OBSERVATION SHEETS

M.H. OBS. <u>0395</u> / _____ Location/Street Edge Railroad/Cross Country DATE: 12/20/12 PROJECT NO.: 11070 PROJECT: Middlebury Exchange Street Manhole Inspections TIME: 1003 INSPECTOR: Kevin J. Camara, P.E. FRAME & COVER: LOCATION IN: TYPE OF MANHOLE: Drain Holes? Y (N) How Many? _ \boxtimes Precast Bit. Pavement Concrete Other D CI 🖂 Material: <u>2</u>4" Diameter or ____x ___ Block Cover Size: Grass/Lawn Diameter or ____x ____x Clear Opening _22"_ Brick Gravel Centered? (Y) N Mortared? Y (N) \bowtie Inside Drop Other General Condition: Biological slime on inside. Woods Outside Drop **DIMENSIONS:** LADDER RUNGS: RISERS AND JOINTS: INVERT: Depth 8'-9" +/-Non-Uniform Flat Top Uniform \bowtie Aluminum (Rim to Invert) Conical Top Rough 🖂 Smooth Iron Inside Dia. _4'-0"__ No. of Risers 1 Solids Accumulated? Y (N) Inside Dimensions: Brick ⊠ Concrete ☐ PVC ☐ Base Plastic ____ X ____ Mortared Appear Safe? Y (N) Describe: Other: Other Minor concrete deterioration and Other: spalling. Significant slime growth. Coated with slime Rough 🛛 Smooth | Sloped X None | Mortar Brick SHELF: Describe: Mortar deteriorated and concrete spalling. Evidence of Surcharging? (Y) N NOTICEABLE DEFICIENCIES: Lift Holes Plugged? (Y) Amount: 4" in Invert GRIT? (Y) N CLEANLINESS: Y (N) Describe: Manhole walls covered in bacterial slime growth. EXTRANEOUS WATER? (Y) N Quantity: 5 gpm Location: 8" inlet pipe connection from west. MH Joint weeping Describe: Hole in MH Wall. CRACKS? (Y) DIAGRAM: (Show location & size of all inlets and outlets) OTHER COMMENTS AND REMARKS: Describe: Minor roots on walls. Minor deterioration and 14'PE 16 VC SLIPLINE spalling of concrete walls. OUTEAPIPE 8"PYC INFILTRATIO 50135 8 CIL - IT PESLIPLINE 16" VC OUTERPIPIL

c:\myfiles\forms\manhole observation sheet working.docx

M.H. OBS. 0398/_____ Location/Street Edge Railroad/Cross Country PROJECT NO.: 11070 DATE: 12/20/12 PROJECT: Middlebury Exchange Street Manhole Inspections TIME: 1043 INSPECTOR: Kevin J. Camara, P.E. FRAME & COVER: TYPE OF MANHOLE: LOCATION IN: Drain Holes? Y (N) How Many? _ \boxtimes Precast Bit. Pavement Concrete Other D Material: CI ⊠ 24" Grass/Lawn Block Cover Size: Diameter or ____x ____ Clear Opening 22"_ Diameter or ___ ____ X ____ Brick Gravel Centered? (Y) N Mortared? (Y) N \boxtimes Inside Drop Other General Condition: Good Woods Outside Drop **DIMENSIONS:** RISERS AND JOINTS: LADDER RUNGS: INVERT: Depth __6'-9"_ +/-Uniform Non-Uniform Flat Top \boxtimes Aluminum (Rim to Invert) Smooth Rough [Conical Top Iron Inside Dia. 4'-0" No. of Risers Solids Accumulated? Y N Inside Dimensions: Brick ☐ Concrete ☐ PVC ☐ Base Plastic Appear Safe? (Y) N Mortared ____ X ____ Describe: Other: Good condition. Other Other: N/A Straight through hard piped. Brick Sloped Smooth Rough None Mortar | SHELF: Describe: No shelf. Evidence of Surcharging? Y (N) NOTICEABLE DEFICIENCIES: Lift Holes Plugged? Y (N) GRIT? Y (N) Amount: CLEANLINESS: (Y) N Describe: EXTRANEOUS WATER? Y (N) Location: Quantity: CRACKS? Y (N) Describe: DIAGRAM: (Show location & size of all inlets and outlets) OTHER COMMENTS AND REMARKS: Describe: Small 4" cleanout in manhole bottom. Pipe 16"VC OLIGI SLIPLINE PIPE Encased in concrete. Not good access DUTTEL PIPIL For maintenance/cleaning. HARD PIDED STEMIGHT Minor deterioration/spalling of concrete walls. THROUGH CLEANOUT 16 VC ORIVIAN PiPE BUTEL PIPE

c:\myfiles\forms\manhole observation sheet working.docx

M.H. OBS. 0399 / Location/Street Edge Railroad/Cross Country PROJECT NO.: 11070 DATE: 12/20/12 PROJECT: Middlebury Exchange Street Manhole Inspections TIME: 1016 INSPECTOR: Kevin J. Camara, P.E. FRAME & COVER: TYPE OF MANHOLE: LOCATION IN: Drain Holes? Y (N) How Manv? \boxtimes Precast Bit. Pavement Concrete ☐ Other ☐ Material: CIX 24" Grass/Lawn Cover Size: Diameter or _____x ____ Block Diameter or ____ Clear Opening _22"_ Brick Gravel Centered? Y (N) Mortared? Y N \times Inside Drop Other General Condition: Frame pushed over 4". Frame needs to be reset. Outside Drop Woods Biological slime on inside. RISERS AND JOINTS: LADDER RUNGS: DIMENSIONS: INVERT: Depth ___7'-7"__+/-Non-Uniform Flat Top Uniform \bowtie Aluminum (Rim to Invert) Rough 🖂 Conical Top Smooth Iron Inside Dia. _4'-0"__ Solids Accumulated? Y(N)No. of Risers Inside Dimensions: Brick ☐ Concrete ☐ PVC ☐ Base Plastic Mortared __ x ___ Describe: Appear Safe? Other: Minor concrete deterioration and Other Other: spalling. Significant slime growth. Coated with slime Smooth | Rough 🖂 Mortar 🖂 Brick | Sloped X None | SHELF: Describe: Mortar deteriorated and concrete spalling. Evidence of Surcharging? (N) NOTICEABLE DEFICIENCIES: Lift Holes Plugged? (Y) N GRIT? Y (N) Amount: Describe: Manhole walls covered in bacterial slime growth. CLEANLINESS: (Y) N Quantity: 3 gpm Location: 8" inlet pipe connection MH riser Joint **EXTRANEOUS WATER?** Ν weeping Describe: CRACKS? (N) DIAGRAM: (Show location & size of all inlets and outlets) OTHER COMMENTS AND REMARKS: Describe: Minor roots on walls. Minor deterioration and 14" PEPIPE spalling of concrete walls. EXTELIOS TOO Inlet slip line pipe push too far into manhole and FAR RESIDENTICTION Flow - W. ITAB pinched to < 1/2 dia. causing flow restriction. 14"PEPIPE OUTLE T

14 Pi DiPE

c:\myfiles\forms\manhole observation sheet working.docx

M.H. OBS. <u>0400</u>/____ Location/Street Edge Railroad/Cross Country PROJECT NO.: 11070 DATE: 12/20/12 PROJECT: Middlebury Exchange Street Manhole Inspections TIME: 1019 INSPECTOR: Kevin J. Camara, P.E. FRAME & COVER: TYPE OF MANHOLE: LOCATION IN: Drain Holes? Y N How Many? _ Bit. Pavement Precast \boxtimes Concrete Other _____ CI 🖂 Material: Diameter or ____x ___ Cover Size: _24" Grass/Lawn Block Diameter or ____x ___ Clear Opening _22" Brick Gravel Mortared? Y (N) Centered? (Y) N Other \boxtimes Inside Drop General Condition: Biological slime on inside. Outside Drop Woods LADDER RUNGS: **DIMENSIONS:** RISERS AND JOINTS: **INVERT:** Depth __6'-11"_ +/-Flat Top Uniform Non-Uniform \boxtimes Aluminum (Rim to Invert) Conical Top Rough 🖂 Smooth Iron Inside Dia. _4'-0" Solids Accumulated? Y N No. of Risers Brick ⊠ Concrete ☐ PVC ☐ Inside Dimensions: Base Plastic Mortared ____ X ___ Describe: Appear Safe? Y N Other: Other Good condition. Other: Coated with slime Smooth Rough 🛛 Brick Sloped X None \square Mortar 🖂 SHELF: Describe: Mortar deteriorated and concrete spalling. Y(N)Evidence of Surcharging? NOTICEABLE DEFICIENCIES: Lift Holes Plugged? Y (N) GRIT? Y (N) Amount: CLEANLINESS: Y (N) Describe: Grade stakes and rags stuck in pipe. Manhole walls covered in bacterial slime growth. Quantity: Weeps Location: MH riser joints. EXTRANEOUS WATER? (Y) N CRACKS? (Y) N Describe: Around MH riser joints. DIAGRAM: (Show location & size of all inlets and outlets) OTHER COMMENTS AND REMARKS: Describe: Minor roots on walls. Minor deterioration and 1 EA. 2" PUL spalling of concrete walls. LAILOGE. Inlet slip line pipe push too far into manhole causing flow restriction. ZEAZ PVC GRIJDERPUMP

c:\myfiles\forms\manhole observation sheet working.docx

M.H. OBS. 0403/_ Location/Street Edge Railroad/Cross Country PROJECT NO.: 11070 DATE: 12/20/12 PROJECT: Middlebury Exchange Street Manhole Inspections TIME: 1054 INSPECTOR: Kevin J. Camara, P.E. FRAME & COVER: TYPE OF MANHOLE: LOCATION IN: Drain Holes? Y (N) How Many? _ Bit. Pavement Precast \boxtimes Concrete Other D Material: CI Cover Size: _24" __ Diameter or ____ x ____ Grass/Lawn Block Clear Opening 22" Diameter or x Brick Gravel Mortared? Y (N) Centered? (Y) N Other \boxtimes Inside Drop General Condition: Good Woods Outside Drop RISERS AND JOINTS: LADDER RUNGS: **DIMENSIONS:** INVERT: ☐ Non-Uniform ☐ Depth __6'-9"_ +/-Uniform Flat Top Aluminum \boxtimes (Rim to Invert) Smooth Rough Conical Top ___1__ Iron Inside Dia. 4'-0" Solids Accumulated? Y N No. of Risers ____ Brick Concrete PVC Base Inside Dimensions: Plastic ____ X ____ Describe: Mortared Appear Safe? Y N Good condition. Other Other: Other: N/A Straight through 14" PE hard Coated with slime piped. Rough SHELF: None Mortar ☐ Brick ☐ Sloped Smooth Describe: No shelf. NOTICEABLE DEFICIENCIES: Evidence of Surcharging? Y (N) GRIT? Y (N) Amount: Lift Holes Plugged? (Y) N CLEANLINESS: (Y) N Describe: EXTRANEOUS WATER? Y (N) Quantity: Location: CRACKS? Y (N) Describe: DIAGRAM: (Show location & size of all inlets and outlets) OTHER COMMENTS AND REMARKS: Small 4" cleanout in manhole bottom. Valve does Describe: 14" PESLIPLINA not work. Not good access for PIPE, PIPED maintenance/cleaning. SOLIO STRMGHT Minor deterioration/spalling of concrete walls. THRONGH VALVE AND CLEAN OUT. VALVE DOES NOT WORK

c:\myfiles\forms\manhole observation sheet working.docx

M.H. OBS. <u>0405</u>/ Location/Street Edge Railroad/Cross Country PROJECT NO.: 11070 DATE: 12/20/12 PROJECT: Middlebury Exchange Street Manhole Inspections TIME: 1118 INSPECTOR: Kevin J. Camara, P.E. FRAME & COVER: TYPE OF MANHOLE: LOCATION IN: Drain Holes? Y (N) How Many? Bit. Pavement Precast \boxtimes Concrete Other D CI 🖂 Material: Diameter or _____x ____ Block Cover Size: 24" Grass/Lawn Diameter or _____ __ X ____ Clear Opening _22" Brick Gravel Mortared? (Y) N Centered? Y (N) Other Inside Drop General Condition: Mortar is cracked. Frame pushed over 6". Outside Drop Edge Woods LADDER RUNGS: DIMENSIONS: RISERS AND JOINTS: INVERT: Depth __9'-6"_ +/-Non-Uniform Flat Top Uniform \boxtimes Aluminum (Rim to Invert) Rough Conical Top Smooth Iron Inside Dia. _4'-0"_ Solids Accumulated? Y N No. of Risers Inside Dimensions: Brick Concrete PVC Base Plastic Describe: Mortared ___X Appear Safe? (Y) N Other: Other Good condition. Other: None Straight 14"PE hard piped Coated with slime Smooth Rough Brick | Sloped 🛛 Mortar 🖂 SHELF: None Describe: Evidence of Surcharging? Y(N)NOTICEABLE DEFICIENCIES: Lift Holes Plugged? (Y) N GRIT? Y (N) Amount: CLEANLINESS: (Y) N Describe: EXTRANEOUS WATER? Y (N) Quantity: Location: Describe: CRACKS? Y (N) DIAGRAM: (Show location & size of all inlets and outlets) OTHER COMMENTS AND REMARKS: Cleanout in center of pipe. Not good access for Describe: CLEANOUT maintenance/cleaning. ANOCAP 14"PE SLIPLINE Minor deterioration/spalling of concrete walls. PIPE PIPED STATEHT TROUGH AND CONLECTY FALMSSED

c:\myfiles\forms\manhole observation sheet working docx

M.H. OBS. 0406/ Location/Street Edge Railroad/Cross Country PROJECT NO.: 11070 DATE: 12/20/12 PROJECT: Middlebury Exchange Street Manhole Inspections TIME: 1109 INSPECTOR: Kevin J. Camara, P.E. FRAME & COVER: TYPE OF MANHOLE: LOCATION IN: Drain Holes? Y (N) How Many? _ Bit. Pavement Precast Concrete Other _____ Material: CI ⊠ Diameter or ____x ___ Cover Size: 24" Grass/Lawn Block Diameter or ____x ___x Clear Opening _22" Brick Gravel Mortared? (Y) N Centered? (Y) N Other \boxtimes Inside Drop General Condition: Mortar is cracked. Outside Drop Woods RISERS AND JOINTS: LADDER RUNGS: **DIMENSIONS:** INVERT: Depth __8'-11"_ +/-Non-Uniform Flat Top Uniform \boxtimes Aluminum (Rim to Invert) Conical Top Rough Smooth Iron Inside Dia. 4'-0" Solids Accumulated? Y N No. of Risers 1 Inside Dimensions: Brick ☐ Concrete ☐ PVC ☐ 1 Base Plastic Mortared ___X ___ Describe: Appear Safe? Y N Other: Other Good condition. Other: None Straight 14"PE hard piped Coated with slime Rough [Sloped X Smooth None Mortar 🖂 Brick SHELF: Describe: Evidence of Surcharging? (Y) N NOTICEABLE DEFICIENCIES: Lift Holes Plugged? (Y) GRIT? Y (N) Amount: _____ CLEANLINESS: (Y) N Describe: EXTRANEOUS WATER? (Y) N Quantity: Weeps Location: Manhole riser joints CRACKS? Y (N) Describe: DIAGRAM: (Show location & size of all inlets and outlets) OTHER COMMENTS AND REMARKS: 100 ORKING Cleanout in center of pipe. Not good access for Describe: maintenance/cleaning. Evidence of surcharging SLIPELINE out cleanout. PIPED STRAIGHT Minor deterioration/spalling of concrete walls. THE OJG H

c:\myfiles\forms\manhole observation sheet working.docx

Location/Street Edge Railroad/Cross Country M.H. OBS. <u>0407</u>/____ PROJECT NO.: 11070 DATE: 12/20/12 PROJECT: Middlebury Exchange Street Manhole Inspections TIME: 1104 INSPECTOR: Kevin J. Camara, P.E. FRAME & COVER: TYPE OF MANHOLE: LOCATION IN: Drain Holes? Y (N) How Many? __ Bit. Pavement Precast \boxtimes Concrete Other D CI 🛛 Material: Diameter or _____x ____ Cover Size: 24" Block Grass/Lawn Clear Opening _22" Diameter or __ Brick П Gravel Centered? (Y) N Mortared? Y (N) \boxtimes Inside Drop Other General Condition: Frame needs to be mortared. Outside Drop Woods LADDER RUNGS: **DIMENSIONS:** RISERS AND JOINTS: INVERT: Depth __8'-9"_ +/-Non-Uniform Flat Top Uniform \boxtimes Aluminum (Rim to Invert) \boxtimes Rough [Conical Top Smooth Iron Inside Dia. 4'-0" No. of Risers Solids Accumulated? Y N Inside Dimensions: Brick ☐ Concrete ☐ PVC ☐ Base Plastic Mortared ____ X ____ Describe: Appear Safe? Y Ν Other: Other Good condition. Other: Cut 14" PE pipe Coated with slime Sloped Rough None | Mortar 🖂 Brick Smooth SHELF: Describe: Evidence of Surcharging? Y(N)NOTICEABLE DEFICIENCIES: GRIT? Y (N) Lift Holes Plugged? (Y) N Amount: Describe: CLEANLINESS: (Y) N Quantity: Weeps Location: Manhole riser joints EXTRANEOUS WATER? (Y) N CRACKS? Y (N) Describe: DIAGRAM: (Show location & size of all inlets and outlets) OTHER COMMENTS AND REMARKS: Cut open top portion of 14" PE. Not good access Describe: DRIHINAL for maintenance/cleaning. 16"VC PIPE WITOP B.but CUT OPEN 50635 Minor deterioration/spalling of concrete walls. - nail-INA

c:\myfiles\forms\manhole observation sheet working.docx

M.H. OBS. 0420 / Location/Street Edge Railroad/Cross Country PROJECT NO.: 11070 DATE: 12/20/12 PROJECT: Middlebury Exchange Street Manhole Inspections TIME: 1127 INSPECTOR: Kevin J. Camara, P.E. FRAME & COVER: LOCATION IN: TYPE OF MANHOLE: Drain Holes? Y (N) How Many? X Bit. Pavement Precast Concrete Other ____ Material: CI Grass/Lawn Block Cover Size: _24" Diameter or ____x ___ Clear Opening _22"_ Diameter or __ X ____ Brick Gravel Mortared? Y (N) Centered? Other Inside Drop General Condition: Good. Woods Outside Drop RISERS AND JOINTS: LADDER RUNGS: **DIMENSIONS:** INVERT: Depth 10'-2"_ +/-Uniform Non-Uniform Flat Top Aluminum \boxtimes (Rim to Invert) Smooth Rough 🖂 Conical Top Iron Inside Dia. 4'-0" No. of Risers Solids Accumulated? Y N Brick ☐ Concrete ☐ PVC ☐ Base Inside Dimensions: Plastic Mortared Appear Safe? Y N Describe: Good condition. Other Other: Other: Minor deterioration Coated with slime Rough Mortar 🖂 Brick Sloped X Smooth [None SHELF: Describe: Minor spalling and biofilm NOTICEABLE DEFICIENCIES: Evidence of Surcharging? (N)GRIT? Y (N) Amount: Lift Holes Plugged? Y N CLEANLINESS: (Y) N Describe: Minor biofilm on walls. Quantity: Weeps Location: Riser joints EXTRANEOUS WATER? (Y) N CRACKS? Y (N) Describe: DIAGRAM: (Show location & size of all inlets and outlets) OTHER COMMENTS AND REMARKS: Outlet 14" PE pipe pushed in too far causing 14' PESCIPLIAL Describe: 16'YC ohibina INLET PIPE Restriction of flow. Minor deterioration/spalling of concrete walls. 14 PE SLIPLINE OUTLET PIPE PUSHED IN TOO FAR RESMICHILFION

c:\myfiles\forms\manhole observation sheet working.docx

Location/Street Edge Railroad/Cross Country M.H. OBS. 0421/ PROJECT NO.: 11070 DATE: 12/20/12 PROJECT: Middlebury Exchange Street Manhole Inspections TIME: 1136 INSPECTOR: Kevin J. Camara, P.E. FRAME & COVER: TYPE OF MANHOLE: LOCATION IN: Drain Holes? Y (N) How Many? \boxtimes Bit. Pavement Precast Material: CI ⊠ Concrete Other \Box __ Diameter or ____x ____ Grass/Lawn Block Cover Size: _24" Clear Opening _22"___ Diameter or ____ x ____ Gravel Brick Mortared? Y N Centered? Y N X Inside Drop Other General Condition: \Box Good. Outside Drop RISERS AND JOINTS: **DIMENSIONS:** LADDER RUNGS: INVERT: Depth __12'-2"_ +/-П Non-Uniform Flat Top Uniform \boxtimes Aluminum (Rim to Invert) Rough 🛛 Conical Top Smooth Iron Inside Dia. 4'-0" 2 Solids Accumulated? Y N No. of Risers Inside Dimensions: Brick ☐ Concrete ☒ PVC ☐ Base 1____ Plastic ____ x ____ Mortared Describe: Appear Safe? Y N Good condition. Other Other: Other: Minor solids. Coated with slime None Mortar Brick Sloped 🖂 Smooth Rough SHELF: Describe: Minor spalling and biofilm NOTICEABLE DEFICIENCIES: Evidence of Surcharging? (Y) N GRIT? (Y) N Amount: Invert 1/4 full Lift Holes Plugged? (Y) N CLEANLINESS: Y (N) Describe: Minor biofilm on walls. EXTRANEOUS WATER? (Y) N Quantity: 10 gpm Location: Inlet side between outer pipe and slip line pipe. CRACKS? (Y) N Describe: MH Walls. OTHER COMMENTS AND REMARKS: DIAGRAM: (Show location & size of all inlets and outlets) Outlet 14" PE pipe pushed in too far causing Describe: 4"PYL 14 PR SERVILY Restriction of flow. SUPLIX MILT Minor deterioration/spalling of concrete walls and WEILTHMIroots. 16"VC official Mil 1.64

> SUPLINE OUTLEF

c:\myfiles\forms\manhole observation sheet working.docx

M.H. OBS. 0759 / Location/Street Edge Railroad/Cross Country PROJECT NO.: 11070 DATE: 12/20/12 PROJECT: Middlebury Exchange Street Manhole Inspections TIME: 0905 INSPECTOR: Kevin J. Camara, P.E. FRAME & COVER: TYPE OF MANHOLE: LOCATION IN: Drain Holes? Y (N) How Many? Bit. Pavement Precast \boxtimes Concrete Other _____ Material: CI Diameter or ____x ____ Cover Size: 24" Grass/Lawn Block Clear Opening 22" Diameter or ____x ___ Brick Gravel Mortared? (Y) N Centered? (Y) N Other General Condition: Good. Woods Outside Drop RISERS AND JOINTS: LADDER RUNGS: DIMENSIONS: INVERT: Uniform Non-Uniform Flat Top Depth 9'-0" +/- \bowtie Aluminum Smooth \boxtimes Rough | Conical Top (Rim to Invert) Iron Solids Accumulated? Y N No. of Risers Inside Dia. 4'-0" Inside Dimensions: Brick ☐ Concrete ☐ PVC ☐ Base Plastic Describe: Mortared Appear Safe? Y N ____ X ____ Other Other: Other: Coated with slime Rough 🖂 SHELF: None Mortar ⊠ Brick □ Sloped ⊠ Smooth □ Describe: NOTICEABLE DEFICIENCIES: Evidence of Surcharging? (Y) N GRIT? (Y) N Amount: __invert ½ full Lift Holes Plugged? - N CLEANLINESS: Y (N) Describe: Entire manhole wall has significant slime growth. Minor spalling of concrete walls EXTRANEOUS WATER? Y N Quantity: Location: CRACKS? Y N Describe: OTHER COMMENTS AND REMARKS: DIAGRAM: (Show location & size of all inlets and outlets) Describe: \\"VC 12 PM SLIPLING 1: N4 Wet NLET

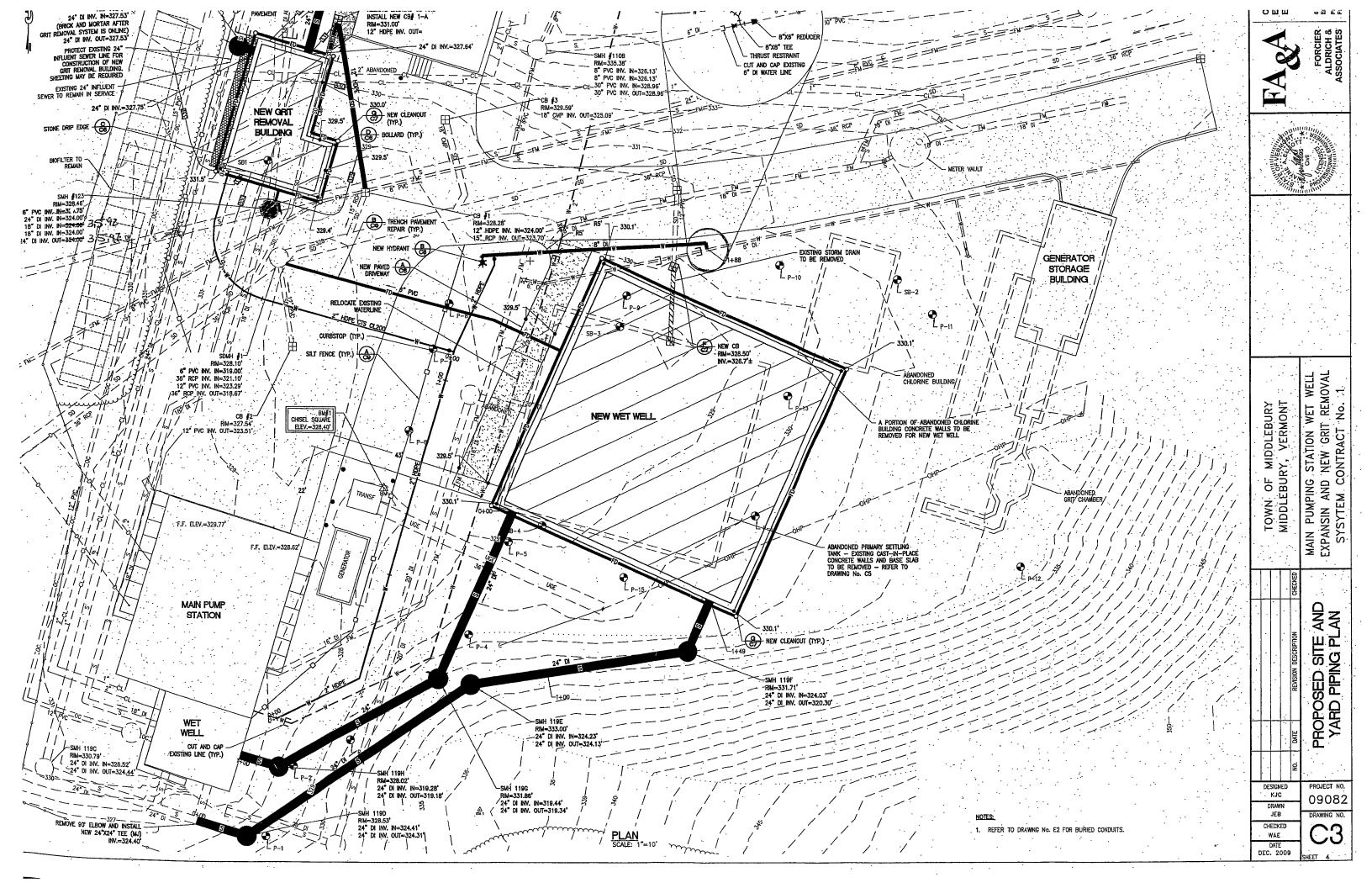
c:\myfiles\forms\manhole observation sheet working_docx

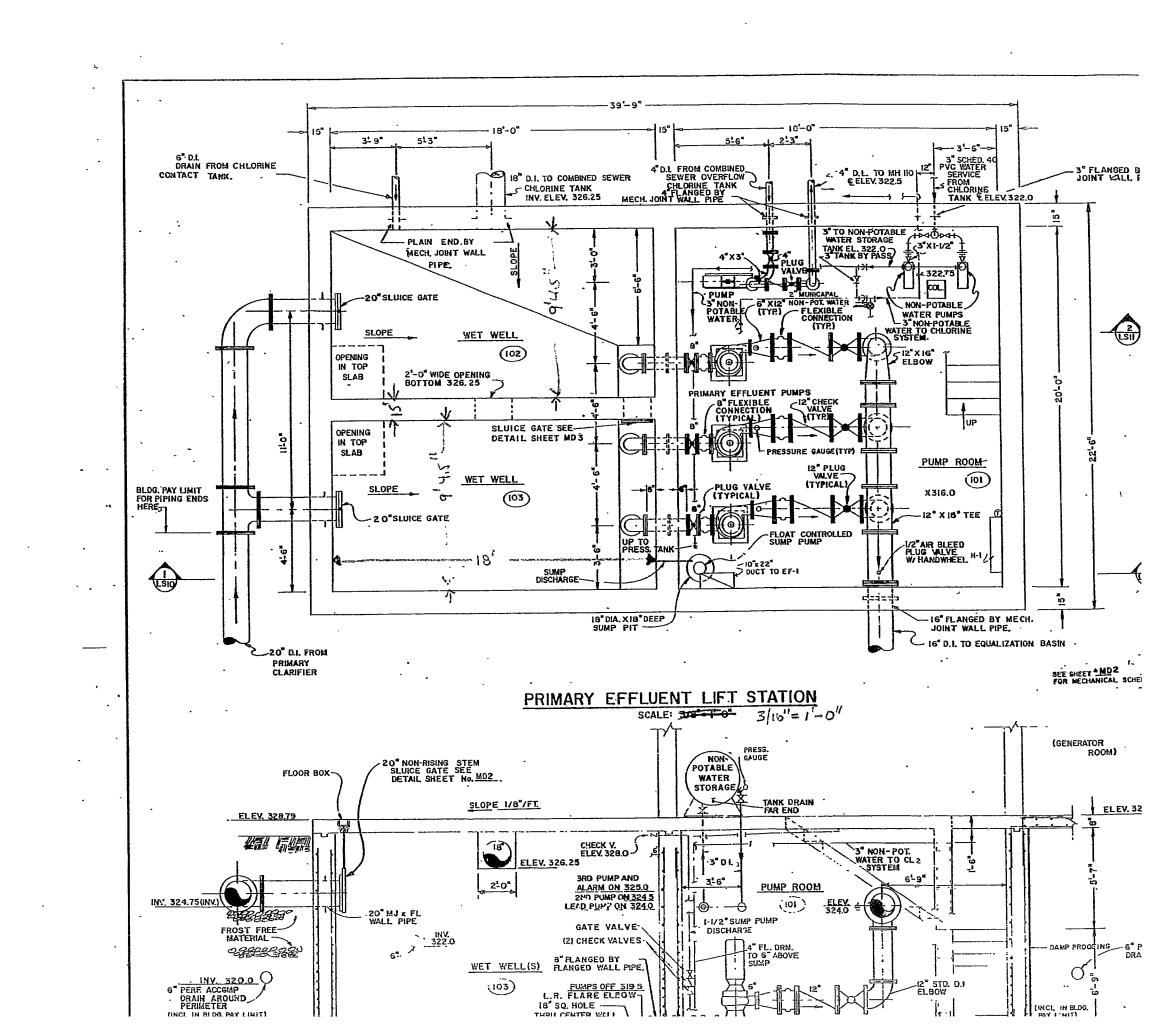
M.H. OBS. 0759A/ Location/Street Edge Railroad/Cross Country PROJECT NO.: 11070 DATE: 12/20/12 PROJECT: Middlebury Exchange Street Manhole Inspections TIME: 0921 INSPECTOR: Kevin J. Camara, P.E. FRAME & COVER: TYPE OF MANHOLE: LOCATION IN: Drain Holes? Y N How Many? _ Bit. Pavement Precast CI Concrete Cother Concrete Co Material: Block Cover Size: 24" __ Diameter or ____ x ____ Grass/Lawn Clear Opening 22" Diameter or x Gravel Brick Mortared? Y N Centered? Y N Other \boxtimes Inside Drop General Condition: Good. Outside Drop Woods RISERS AND JOINTS: LADDER RUNGS: **DIMENSIONS:** INVERT: Depth __6'-7"_ +/-Non-Uniform Flat Top Uniform \boxtimes Aluminum (Rim to Invert) Rough 🖂 Conical Top Smooth Iron Inside Dia. 4'-0" Solids Accumulated? Y N No. of Risers Inside Dimensions: Brick ⊠ Concrete ☐ PVC ☐ Base Plastic Mortared Appear Safe? Y N ____ X ____ Describe: Other: Other Invert deteriorated. Other: Coated with slime Smooth Rough 🖂 Brick Sloped X None \square Mortar 🖂 SHELF: Describe: Mortar deteriorated and concrete spalling. Evidence of Surcharging? Y N NOTICEABLE DEFICIENCIES: GRIT? Y N Amount: invert ½ full Lift Holes Plugged? Y N CLEANLINESS: Y N Describe: Entire manhole wall has significant slime growth. Minor spalling of concrete walls. Significant root growth on walls. Quantity: ___<1gpm Location: _Inlet pipe connection. EXTRANEOUS WATER? (Y) N CRACKS? Y N Describe: DIAGRAM: (Show location & size of all inlets and outlets) OTHER COMMENTS AND REMARKS: Inlet pipe leaking between 12" PE slipline and 14" Describe: 14" VC original pipe. ORIGINAL P.Ph INFILMATION INFILMATION 12" PE SLIPLING. SLIPLINE DUTLET

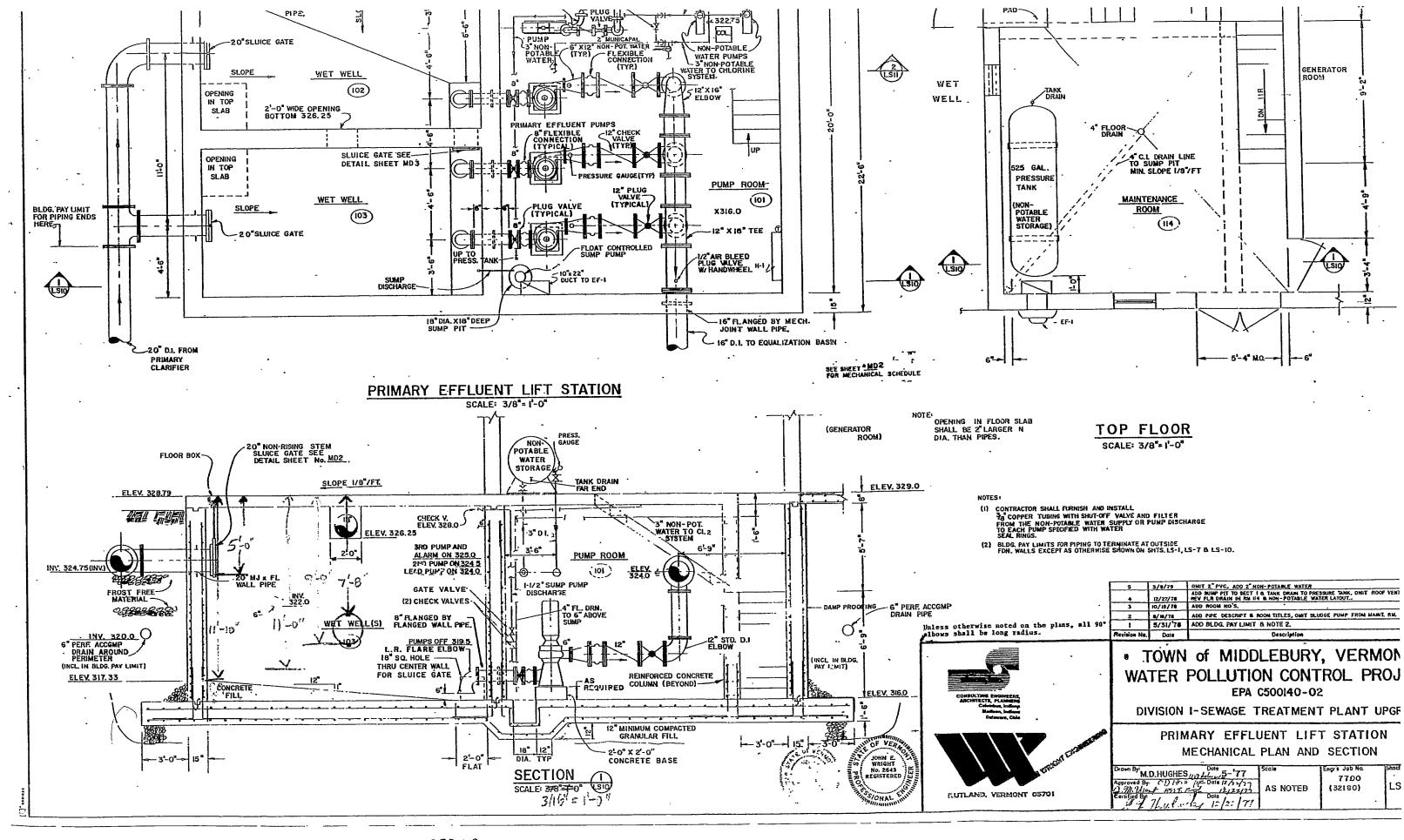
c:\myfiles\forms\manhole observation sheet working.docx

Location/Street Edge Railroad/Cross Country M.H. OBS. 0780 / PROJECT NO.: 11070 DATE: 12/20/12 PROJECT: Middlebury Exchange Street Manhole Inspections TIME: 0934 INSPECTOR: Kevin J. Camara, P.E. FRAME & COVER: TYPE OF MANHOLE: LOCATION IN: Drain Holes? Y N How Many? \boxtimes Bit. Pavement Precast Concrete Other D_____ Material: CI Cover Size: 24" Diameter or _____x Grass/Lawn Block Clear Opening _22" Diameter or ___ ____ X ___ Brick Gravel Centered? (Y) N Mortared? Y (N) Other Inside Drop General Condition: Biological slime on inside. Outside Drop Woods LADDER RUNGS: **DIMENSIONS:** RISERS AND JOINTS: INVERT: Depth 9'-2" +/-Non-Uniform Uniform Flat Top Aluminum \boxtimes (Rim to Invert) Smooth Rough 🖂 Conical Top Iron Inside Dia. _4'-0"_ Solids Accumulated? Y N No. of Risers Inside Dimensions: Brick ☐ Concrete ☐ PVC ☐ Base Plastic Describe: Mortared ____X ___ Appear Safe? Y N Other: Invert deteriorated and spalling. Other Other: Coated with slime Smooth | Rough 🖂 SHELF: None | Mortar 🖂 Brick | Sloped X Describe: Mortar deteriorated and concrete spalling. Evidence of Surcharging? (Y) N NOTICEABLE DEFICIENCIES: Lift Holes Plugged? (Y) GRIT? Y (N) N Amount: CLEANLINESS: (Y) N Describe: Manhole walls covered in bacterial slime growth. EXTRANEOUS WATER? (Y) N Quantity: Weeping Location: At both pipe connections and base/riser joint. CRACKS? (Y) N Describe: DIAGRAM: (Show location & size of all inlets and outlets) OTHER COMMENTS AND REMARKS: Inlet pipe leaking between 12" PE slipline and 14" Describe: 16"VC 14"PEINLET original pipe. ORIGINAL SLIPLIAL P: P2 Pips

c:\myfiles\forms\manhole observation sheet working.docx


AE


M.H. OBS. 0780A / _____ Location/Street Edge Railroad/Cross Country PROJECT NO.: 11070 DATE: 12/20/12 PROJECT: Middlebury Exchange Street Manhole Inspections TIME: 0934 INSPECTOR: Kevin J. Camara, P.E. FRAME & COVER: TYPE OF MANHOLE: LOCATION IN: Drain Holes? Y (N) How Many? \boxtimes Precast Bit. Pavement CI Concrete Other _____ Material: Cover Size: 24" Diameter or _____x ____ Block Grass/Lawn Clear Opening 22" Diameter or x Brick Gravel Mortared? (Y) N Centered? (Y) N Other Inside Drop General Condition: Biological slime on inside. Woods Outside Drop LADDER RUNGS: **DIMENSIONS:** RISERS AND JOINTS: INVERT: Depth __9'-2"_ +/-Uniform Non-Uniform Flat Top \boxtimes Aluminum (Rim to Invert) Rough 🛛 Conical Top Smooth Inside Dia. 4'-0" Iron Solids Accumulated? Y N No. of Risers Inside Dimensions: Brick ☐ Concrete ☐ PVC ☐ Base Plastic ____ X ____ Describe: Mortared Appear Safe? Y N Other: Other Invert deteriorated, spalling and Other: significant slime growth. Coated with slime Smooth Rough 🖂 Brick | Sloped X None | Mortar 🖂 SHELF: Describe: Mortar deteriorated and concrete spalling. Evidence of Surcharging? NOTICEABLE DEFICIENCIES: Lift Holes Plugged? (Y) GRIT? Y (N) Amount: CLEANLINESS: (Y) N Describe: Manhole walls covered in bacterial slime growth. EXTRANEOUS WATER? (Y) N Quantity: 5 gpm Location: Hole in MH Wall and under frame. CRACKS? Y N Describe: Hole in MH Wall. DIAGRAM: (Show location & size of all inlets and outlets) OTHER COMMENTS AND REMARKS: Describe: SLIPLINE 6 PVC D: P4 50235


c:\myfiles\forms\manhole observation sheet working.docx

APPENDIX G WET WELL SKETCHES

328,70 315 2. 9.57 = 9 - 3" - 2' diappe 7'-"

APPENDIX H WET WELL DRAWDOWN VOLUME CALCULATIONS

6 Market Place, Suite 2 Essex Junction, VT 05452 Tel 802.879.7733 www.AEengineers.com

JOB MIDOL	26ULY MAI	~ PUMPSTATIL
SHEET NO.	CAPACIT	OF_
CALCULATED BY	じょし	DATE 8/26/12
CHECKED BY	WA-F_	DATE

	
DRAW DOWN VOLUME CALCULATIONS	
]
	1
ORIGINAL WIT WELL VOLUME (2ca wer wells)	
See ATTACHMENT NOIT FOR DRAWINGS (18 X 9375 rech)	
V=2×13'× 9.375'×1'= 337.5 FT3 × 7.48 gAL/ FT3 = 2,524 gAL/FT	
Manholt Volume (2 ea, 60" ID)	
	· : - ·
- Manhole volume is USED ABOVE Elever DV 320.Y'	:
When manhous are surcharged above sheef.	:
	:
V= 2π+2h = 2π (25pr) (1FT) = 39,3 pr × 7,43 gal = 293 g	
V= 2π(ch = 2π (215 FT) = (1FT) = 39,3 FT = 7, Y8 gAL = 293 g	ALILET
F73 Carrette	
	: :
Pipe volume. (24" Pipe, 10 FT LengTIH)	. j
- TOP OF PIPE ELEVATION = 321.12	:
- Bottom Pipe ziev 319.12	- !
	:
V= Tr r2L = Tr (IFT)2 (101FT) = 317 m2 x 1,7304 = 2,373 gA	
	: .
	:
	- · · · · ·

APPENDIX I 1ST ROUND DRAWDOWN CAPACITY CALCULATIONS

Date: Project No.: 8/29/2012

11070

Persons Present:

Kevin J. Camara, P.E., Bob Wells, Jerry Skira

Pump 1 High Speed

Run Time (min:sec) 0:00 0:22 0:56 1:22 1:57 2:32	Run Time (min) 0.00 0.37 0.93 1.37 1.95 2.53	Interval Time (min.) 0.00 0.37 0.57 0.43 0.58 0.58	Depth from Top of Hatch (in) 64 70 76 82 88 94	Dist. Hatch to TOC (ft) 1 1 1 1 1 1	Elev. TOC (ft) 328.79 328.79 328.79 328.79 328.79 328.79	Liquid Elevation (ft) 324.46 323.96 323.46 322.96 322.46 321.96	Interval Height (ft) 0.00 0.50 0.50 0.50	Volume/FT Wetwell (gal/ft) 2,524 2,524 2,524 2,524 2,524	Volume/FT MH (gal/ft) 293 293 293 293 293	Volume/FT Pipe (gal/ft) 0 0 0 0 202 1,186	Total Volume/FT (gal/ft) 2,817 2,817 2,817 2,817 3,019 4,003	Volume/ Interval (gal) 1,40: 1,40: 1,40: 1,40: 1,51: 2,00	2,4 3,2 3,2 2,4 0 2,5	86 50 15 88	126 126 126 126 126 126	Drawdowr Flow Ra (gpm) 3,967 2,612 3,376 2,541 2,714 3,557		Flown Read (MGD) 3.32 3.23 3.18 3.14 3.10 3.07	
3:07	3.12	0.58	100	1	328.79	321.46	0.50	2,524	293	•	4,003	2,00			126	2,985	4.30	3.06	2,125
3:49	3.82	0.70	106	1	328.79	320.96	0.50	2,524	293	1,186 1,186	4,003 3,710	1,85			126	2,012	2.90	3.05	2,118
4:48	4.80	0.98	112	1	328.79	320.46	0.50	2,524	0	1,186	3,710	1.85			126	2,546	3.67	3.03	2,104
5:34	5,57	0.77	118	1	328.79	319.96	0.50	2,524 2,524	0	403	2,927	1,46	-		126	2,268	3.27	3.01	2,090
6:15	6.25	0.68	124	1	328.79	319.46	0.50 0.50	2,524	0	0	2,524	1,26	•		126	2,421	3,49	3.02	2,097
6:48	6.80	0.55	130	1	328.79	318.96	0.50	2,324	Ū	·	_,	Averag		32	126	2,858	4.12	3.12	2,166
Fill 0:00 2:12 3:25 5:00	0 2.20 3.42 5	0.00 2.20 1.22 1.58	134.75 133 132.25 131.63	1 1 1	328.79 328.79 328.79 328.79	318.56 318.71 318.77 318.82	0.00 0.15 0.06 0.05	2,524 2,524 2,524 2,524	0 0 0	0 0 0	2,524 2,524 2,524 2,524	_	0 8 1 8 1	67 30 82 26					
<u>Overall Volu</u>	<u>me</u>	Run Time (min) 6.80				own Interval Drawdown V		Volume/FT Wetwell (gal/ft) 2524 5.50	Volume/FT MH (gal/ft) 293 4.0	Volume/Full Pipe Pipe (gal) 2,373 1 2,373		Total Volume (gal) 17,41	Drawdown Flow Rate (gpm)	Fill Flow Rate (gpm)	126	Drawdowi Flow R (gpm) 2,687		Flown Read (MGD) 3.12	

321.12 Top of Pipe from New Wet Weil= Bottom of Pipe from New Wet Well= 319.12 320.4 MH 119H Shelf 320.5 MH 119G Shelf

Date:

8/29/2012

Project No.:

11070

Persons Present:

Kevin J. Camara, P.E., Bob Wells, Jerry Skira

Pump 2 High Speed

												Total				
Run	Run	Interval	Depth from	Dist.	Elev.	Liquid	Interval	Volume/FT	Volume/FT	Volume/FT	Total	Volume/	Drawdo		Flown	
Time	Time	Time	Top of Hatch	Hatch to TOC	TOC	Elevation	Height	Wetwell	MH	Pipe	Volume/FT	interval	Flow Ra	te	Read	ling
(min:sec)	(min)	(min.)	(in)	(ft)	(ft)	(ft)	(ft)	(gal/ft)	(gal/ft)	(gal/ft)	(gal/ft)	(gal)	(gpm)	(MGD)	(MGD)	(gpm)
0:00	0.00	0.00	72.25	1	328.79	323.77	0.00									
0:42	0.70	0.70	78	1	328.79	323.29	0.48	2,524	293	0	2,817	1,350	1,928	2.78	3.27	2,271
	1.18	0.48	84	1	328.79	322.79	0.50	2,524	293	0	2,817	1,409	2,914	4.20	3.12	2,167
1:11		0.48	90	1	328.79	322.29	0.50	2,524	293	0	2,817	1,409	2,641	3.80		
1:43	1.72			- 1	328.79		0.50	2,524	293	0	2,817	1,409	2,486	3.58	3.07	2,132
2:17	2.28	0.57	96	1	328.79	321.79	0.50	2,524	293	202	3,019	1,510	3,354	4.83		
2:44	2.73	0.45	102	1		320.96	0.33	2,524	293	1,186	4,003	1,334	2,502	3.60	3.02	2,097
3:16	3.27	0.53	106	1	328.79				293	1,186	4,003	2,002	2,266	3.26		
4:09	4.15	0.88	112	1	328.79	320.46	0.50	2,524		1,186	3,710	1,237	2,005	2.89	2.96	2,056
4:46	4.77	0.62	116	1	328.79	320.12	0.33	2,524	0	,	•	•	3,092	4.45	3.00	2,083
5:10	5.17	0.40	120	1	328.79	319.79	0.33	2,524	0	1,186	3,710	1,237	-	3.72	2.99	2,076
5:44	5.73	0.57	126	1	328.79	319.29	0.50	2,524	0	403	2,927	1,464	2,583			
6:05	6.08	0.35	130	1	328.79	318.96	0.33	2,524	0	0	2,524	.841	2,404	3.46	2.99	2,076
0.02												Average	2,561	3.69	3.05	2,120
Overall Volu	me															
		Run					Interval	Volume/FT	Volume/FT	Volume/Full Pipe		<u>.</u>			۳۱ ـ	
		Time					Height	Wetwell	MH	Pipe		Total	Drawdo		Flown	
		(min)					(ft)	(gal/ft)	(gal/ft)	(gal)		Volume	Flow Ra		Read	-
		6.08					4.81	2524	293	2,373		(gal)	(gpm)	(MGD)	(MGD)	(gpm)
		0.00			Drawo	lown Interva	l (ft or Pipe)	4.81	3.3	1						
						Drawdown V		12,147	958	2,373		15,478	2,544	3.66	3.05	2,120

 Top of Pipe from New Wet Well=
 321.12

 Bottom of Pipe from New Wet Well=
 319.12

 MH 119H Shelf
 320.4

 MH 119G Shelf
 320.5

Date:

8/29/2012

Project No.:

11070

Persons Present:

Kevin J. Camara, P.E., Bob Wells, Jerry Skira

Pump 3 High Speed

Run	Run	Interval	Depth from	Dist. Hatch to TOC	Elev. TOC	Liquid Elevation	Interval Height	Volume/FT Wetwell	Volume/FT MH	Volume/FT Pipe	Total Volume/FT	Total Volume/ Interval	Drawdo Flow Ra		Flowm Readi	
Time	Time	Time	Top of Hatch			(ft)	(ft)	(gal/ft)	(gal/ft)	(gal/ft)	(gal/ft)	(gal)	(gpm)	(MGD)	(MGD)	(gpm)
(min:sec)	(min)	(min.)	(in)	(ft)	(ft)			(gai/it)	(Sai) ici	(801) 14	10-7-7	101	101			
0:00	0.00	0.00	66.5	1	328.79		0.00	2 524	202	0	2,817	1,291	1,937	2.79	3.22	2,236
0:40	0.67	0.67	72	1	328.79		0.46	2,524	293		•	1,409	2,817	4.06	3.22	2,236
1:10	1.17	0.50	78	1	328.79	323.29	0.50	2,524	293	0	2,817	•	•		3.00	2,083
1:41	1.68	0.52	84	1	328.79	322.79	0.50	2,524	293	0	2,817	1,409	2,726	3.93		
2:10	2.17	0.48	90	1	328.79	322.29	0.50	2,524	293	0	2,817	1,409	2,914	4.20	3.00	2,083
	2.70	0.53	96	1	328.79	321.79	0.50	2,524	293	0	2,817	1,409	2,641	3.80	3.06	2,125
2:42			104	1	328.79		0.67	2,524	293	0	2,817	1,878	2,683	3.86	3.03	2,104
3:24	3.40	0.70		1			0.42	2,524	293	1,186	4,003	1,668	2,441	3.51	3.03	2,104
4:05	4.08	0.68	109	1	328.79			-	76	1,186	3,786	1,578	2,366	3.41	3.00	2,083
4:45	4.75	0.67	114	1	328.79		0.42	2,524		•		1,855	2,226	3.21	2.99	2,076
5:35	5.58	0.83	120	1	328.79		0.50	2,524	0	1,186	3,710	•	•	3.23	3.00	2,083
6:27	6.45	0.87	127	1	328.79	319.21	0.58	2,524	0	806	3,330	1,943	2,242			
												Average	2,499	3.60	3.06	2,122
Overall Volu	<u>me</u>						Interval	Volume/FT	Volume/FT	Volume/Full Pipe						
		Run					Height	Wetwell	MH	Pipe		Total	Drawdo	wn	Flowm	eter
		Time					-			(gal)		Volume	Flow R		Readi	ing
		(min)					(ft)	(gal/ft)	(gal/ft)					(MGD)	(MGD)	(gpm)
		6.45					5.04	2524	293	2,373		(gal)	(gpm)	(MOD)	(mos)	/Ph/
					Drawd	lown Interva	l (ft or Pipe)	5.04	3.9	1					2.25	2 422
						Drawdown V	olume (gal)	12,725	1,129	2,373		16,227	2,516	3.62	3.06	2,122

 Top of Pipe from New Wet Well=
 321.12

 Bottom of Pipe from New Wet Well=
 319.12

 MH 119H Shelf
 320.4

 MH 119G Shelf
 320.5

Date:

8/29/2012

Project No.:

11070

Persons Present:

Kevin J. Camara, P.E., Bob Wells, Jerry Skira

Total

Pumps 1 & 2 High Speed

Run	Run	Interval	Depth from	Dist.	Elev.	Liquid	Interval	Volume/FT	Volume/FT	Volume/FT	Total	Volume/	Drawdo Flow Ra		Flown Read	
Time	Time	Time	Top of Hatch	Hatch to TOC	TOC	Elevation	Height	Wetwell	MH	Pipe	Volume/FT	Interval			(MGD)	-
(min:sec)	(min)	(min.)	(in)	(ft)	(ft)	(ft)	(ft)	(gal/ft)	(gal/ft)	(gal/ft)	(gal/ft)	(gal)	(gpm)	(MGD)	(MOD)	(gpm)
0:00	0.00	0.00	70	1	328.79	323.96	0.00							2.40		
0:35	0.58	0.58	76	1	328.79	323.46	0.50	2,524	293	0	2,817	1,409	2,415	3.48 -		2 220
0:56	0.93	0.35	82	1	328.79	322.96	0.50	2,524	293	0	2,817	1,409	4,024	5.79	4.65	3,229
1:17	1.28	0.35	88	1	328.79	322.46	0.50	2,524	293	0	2,817	1,409	4,024	5.79	4.57	3,174
1:39	1.65	0.37	94	1	328.79	321.96	0.50	2,524	293	0	2,817	1,409	3,841	5.53	4.48	3,111 /
2:00	2.00	0.35	100	1	328.79	321.46	0.50	2,524	293	0	2,817	1,409	4,024	5.79	4.38	3,042
2:30	2.50	0.50	106	1	328.79	320.96	0.50	2,524	293	380	3,197	1,598	3,197	4.60	4.25	2,951
3:12	3.15	0.65	112	1	328.79	320.46	0.50	2,524	293	1,186	4,003	2,002	3,079	4.43	4.17	2,896
_	3.70	0.55	118	1	328.79	319.96	0.50	2,524	0	1,186	3,710	1,855	3,373	4.86	4.12	2,861
3:42			124	1	328.79	319.46	0.50	2,524	0	1,186	3,710	1,855	3,975	5.72	4.12	2,861
4:10	4.17	0.47		1	328.79		0.50	2,524	0	806	3,330	1,665	4,758	6.85	4.12	2,861
4:31	4.52	0.35	130	1	320.73	3,10.50	0.50	_,			•	Average	3,671	5.29	4.32	2,998
Overall Volu	<u>me</u>		•					and the same	M. Luca - IET	Makema /Fell Dino						
		Run					Interval	Volume/FT	Volume/FT	Volume/Full Pipe		Total	Drawdo	wn	Flown	neter
		Time					Height	Wetwell	MH	Pipe			Flow Ra		Read	
		(min)					(ft)	(gal/ft)	(gal/ft)	(gal)		Volume		(MGD)	(MGD)	(gpm)
		4.52					5.00	2524	293	2,373		(gal)	(gpm)	(IMGD)	(IAIOD)	(Ph.m)
						lown Interva		5.00	3.6	1		46.007	2 554	F 11	4.32	3,000
						Drawdown \	/olume (gal)	12,620	1,044	2,373		16,037	3,551	5.11	4.32	3,000

Top of Pipe from New Wet Well=		321.12
Bottom of Pipe from New Wet Well=		319.12
MH 119H Shelf	•	320.4
MH 119G Shelf		320.5

Date:

8/29/2012

Project No.:

11070

Persons Present:

Kevin J. Camara, P.E., Bob Wells, Jerry Skira

Pumps 1 & 3 High Speed

Run Time	Run Time	Interval Time	Depth from Top of Hatch	Dist. Hatch to TOC	Elev. TOC	Liquid Elevation	Interval Height	Volume/FT Wetwell	Volume/FT MH	Volume/FT Pipe	Total Volume/FT	Total Volume/ Interval	Drawdo Flow Ra		Flown Read	
(min:sec)	(min)	(min.)	(in)	(ft)	(ft)	(ft)	(ft)	(gal/ft)	(gal/ft)	(gal/ft)	(gal/ft)	(gal)	(gpm)	(MGD)	(MGD)	(gpm)
0:00	0.00	0.00	70.5	1	328.79	323.92	0.00									
0:32	0.53	0.53	76	1	328.79	323.46	0.46	2,524	293	0	2,817	1,291	2,421	3.49	4.85	3,368
0:52	0.87	0.33	82	1	328.79	322.96	0.50	2,524	293	0	2,817	1,409	4,226	6.08	4.67	3,243
1:12	1.20	0.33	88	1	328.79	322.46	0.50	2,524	293	0	2,817	1,409	4,226	6.08	4.59	3,188
1:35	1.58	0.38	94	1	328.79	321.96	0.50	2,524	293	0	2,817	1,409	3,674	5.29	4.49	3,118
1:56	1.93	0.35	100	1	328.79	321.46	0.50	2,524	293	0	2,817	1,409	4,024	5.79	4.40	3,056
2:24	2.40	0.47	106	1	328.79	320.96	0.50	2,524	293	380	3,197	1,598	3,425	4.93	4.30	2,986
3:07	3.12	0.72	112	1	328.79	320.46	0.50	2,524	293	1,186	4,003	2,002	2,793	4.02	4.21	2,924
3:38	3.63	0.52	118	1	328.79	319.96	0.50	2,524	0	1,186	3,710	1,855	3,590	5.17	4.19	2,910
4:05	4.08	0.45	124	1	328.79	319.46	0.50	2,524	0	1,186	3,710	1,855	4,122	5.94	4.19	2,910
4:28	4,47	0.38	130	1	328.79	318.96	0.50	2,524	0	806	3,330	1,665	4,344	6.26	4.18	2,903
1120												Average	3,684	5.31	4.41	3,060
Overall Volu	<u>me</u>									V 1 /5 /10 Pt		•				
		Run					Interval	Volume/FT	Volume/FT	Volume/Full Pipe		Tetal	Drawdo	wn	Flown	eter
		Time					Height	Wetwell	MH	Pipe		Total			Read	
		(min)					(ft)	(gal/ft)	(gal/ft)	(gal)		Volume	Flow Ra			7 .
		4.47					4.96	2524	293	2,373		(gal)	(gpm)	(MGD)	(MGD)	(gpm)
					Drawd	own Interval	(ft or Pipe)	4.96	3.5	1						2.000
						Drawdown V	olume (gal)	12,515	1,031	2,373		15,919	3,564	5.13	4.41	3,060

Top of Pipe from New Wet Well=	321.12
Bottom of Pipe from New Wet Well=	319.12
MH 119H Shelf	320.4
MH 119G Shelf	320.5

Date:

8/29/2012

Project No.:

11070

Persons Present:

Kevin J. Camara, P.E., Bob Wells, Jerry Skıra

Pumps 1 & 2 High Speed FM Bypass Open

Run	Run	Interval Time	Depth from Top of Hatch	Dist. Hatch to TOC	Elev. TOC	Liquid Elevation	Interval Height	Volume/FT Wetwell	Volume/FT MH	Volume/FT Pipe	Total Volume/FT	Total · Volume/ Interval	Drawd Flow R	
Time	Time		•	(ft)	(ft)	(ft)	(ft)	(gal/ft)	(gal/ft)	(gal/ft)	(gal/ft)	(gal)	(gpm)	(MGD)
(min:sec)	(min)	(min.)	(in)	(14)	328.79	323.81	0.00	10-7-7	10-7-7					
0:00	0.00	0.00	71.75	1 1	328.79	323.46	0.35	2,524	293	0	2,817	998	1,995	2.87
0:30	0.50	0.50	76	1			0.50	2,524	293	0	2,817	1,409	4,695	6.76
0:48	0.80	0.30	82	1	328.79	322.96			293	0	2,817	1,409	4,226	6.08
1:08	1.13	0.33	88	1	328.79	322.46	0.50	2,524		0	2,817	1,409	4,024	5.79
1:29	1.48	0.35	94	1	328.79	321.96	0.50	2,524	293		•	1,409	4,448	6.40
1:48	1.80	0.32	100	1	328.79	321.46	0.50	2,524	293	0	2,817		3,425	4.93
2:16	2.27	0.47	106	1	328.79	320.96	0.50	2,524	293	380	3,197	1,598	-	4.32
2:56	2.93	0.67	112	1	328.79	320.46	0.50	2,524	293	1,186	4,003	2,002	3,002	
3:25	3.42	0.48	118	1	328.79	319.96	0.50	2,524	0	1,186	3,710	1,855	3,838	5.53
3:50	3.83	0.42	124	1	328.79	319.46	0.50	2,524	0	1,186	3,710	1,855	4,452	6.41
4:11	4.18	0.35	130	1	328.79	318.96	0.50	2,524	0	806	3,330	1,665 _	4,758	6.85
4.11	4.10	0.55	100	_							,	Average	3,886	5.60
Overall Volu	<u>ne</u>								sa to salem	Malara a /Full Dine				
		Run					Interval	Volume/FT	Volume/FT	Volume/Full Pipe		T-4-1	. Drawd	21412
		Time					Height	Wetwell	МН	Pipe		Total		
		(min)					(ft)	(gal/ft)	(gal/ft)	(gal)		Volume	Flow F	
		4.18					4.85	2524	293	2,373		(gal)	(gpm)	(MGD)
					Drawo	lown Interva	l (ft or Pipe)	4.85	3.4	1_				
						Drawdown \	/olume (gal)	12,252	1,001	2,373		15,626	3,735	5.38

Top of Pipe from New Wet Well=	321.12
Bottom of Pipe from New Wet Well=	319.12
MH 119H Shelf	320.4
MH 119G Shelf	320.5

Date:

8/29/2012

Project No.:

11070

Persons Present:

Kevin J. Camara, P.E., Bob Wells, Jerry Skira

Total

Pumps 1, 2 & 3 High Speed

Run	Run	Interval	Depth from	Dist. Hatch to TOC	Elev. TOC	Liquid Elevation	Interval Height	Volume/FT Wetwell	Volume/FT MH	Volume/FT Pipe	Total Volume/FT	Volume/ Interval	Drawdov Flow Ra	te	Flowm Read	ing
Time	Time	Time	Top of Hatch		(ft)	(ft)	(ft)	(gal/ft)	(gal/ft)	(gal/ft)	(gal/ft)	(gal)	(gpm)	(MGD)	(MGD)	(gpm)
(min:sec)	(min)	(min.)	(in)	(ft)		323.8733	0.00	(0-7-7	10.7							
0:00	0.00	0.00	71	1	328.79		0.42	2,524	293	0	2,817	1,174	2,201	3.17	5.48	3,806
0:32	0.53	0.53	76	1	328.79	323.4567		•	293	0	2,817	1,409	5,282	7.61	5.32	3,694
0:48	0.80	0.27	82	1	328.79	322.9567	0.50	2,524		0	2,817	1,409	4,695	6.76	5.14	3,569
1:06	1.10	0.30	88	1	328.79	322.4567	0.50	2,524	293	0	2,817	1,409	4,448	6.40	5.06	3,514
1:25	1,42	0.32	94	1	328.79	321.9567	0.50	2,524	293	0	2,817	1,409	4,448	6.40	4.86	3,375
1:44	1.73	0.32	100	1	328.79	321.4567	0.50	2,524	293	0	•	1,599	3,552	5.12	4.81	3,340
2:11	2.18	0.45	106	1	328.79	320.9567	0.50	2,524	293	380	3,197	-		5.24	4.71	3,271
2:44	2.73	0.55	112	1	328.79	320.4567	0.50	2,524	293	1,186	4,003	2,002	3,639		4.70	3,264
	3.28	0.55	118	1	328.79	319.9567	0.50	2,524	0	1,186	3,710	1,855	3,373	4.86		
3:17			124	1	328.79		0.50	2,524	0	1,186	3,710	1,85 5	4,638	6.68	4.65	3,229
3:41	3.68	0.40	130	1	328.79		0.50	2,524	0	806	3,330	1,665	4,758	6.85	4.60	3,194
4:02	4.03	0.35	130	-	320.73	310.330,	V.2-V	-, ·			Į.	werage	4,103	5.91	4.93	3,426
Overall Volu	<u>me</u>	D					Interval	Volume/FT	Volume/FT	Volume/Full Pipe						
		Run					Height	Wetwell	MH	Pipe		Total	Drawdo		Flown	
		Time					(ft)	(gal/ft)	(gal/ft)	(gal)		Volume	Flow Ra	te	Read	ling
		(min)					4,92	2524	293	2,373		(gal)	(gpm)	(MGD)	(MGD)	(gpm)
		4.03			D	down Interva		4.92	3.5	, 1						
					Draw			12,410	1,019	2,373		15,802	3,918	5.64	4.93	3,426
						Drawdown	Volume (gal)	12,410	1,013	2,575			·			

 Top of Pipe from New Wet Well=
 321.12

 Bottom of Pipe from New Wet Well=
 319.12

 MH 119H Shelf
 320.4

 MH 119G Shelf
 320.5

APPENDIX J

2ST ROUND DRAWDOWN CAPACITY CALCULATIONS AND SYSTEM CURVE

10/11/2012 Date 11070 Project No

Kevin J. Camara, P E , Bob Wells, Jerry Skira Persons Present:

Pump 1 Low Speed

Static Pressure 30 psi 69 feet

33 Hertz Pump Speed 13 % Motor Torque 994 rpm RPM 97 KW Power

													Total						
Run	Run	Interval	Depth from	Dist	Elev.	Liquid	Interval	Volume/FT	Volume/FT	Volume/FT		Total	Volume/	Drawdo		Flown		Dischar	_
Time	Time	Time	Top of Hatch	Hatch to TOC	TOC	Elevation	Height	Wetwell	MH	Pipe		Volume/FT	Interval	Flow Ra	ate	Read	ling	Pressu	
(min:sec)	(min)	(min.)	(in)	(ft)	(ft)	(ft)	(ft)	(gal/ft)	(gal/ft)	(gal/ft)		(gal/ft)	(gal)	(gpm)	(MGD)	(MGD)	(gpm)	(psi)	(FT)
00 00	0.00	0 00	67 75	1	328 79	324.14	0.00												
03 56	3.93	3 93	74	1	328 79	323 62	0.52	2,524	293		0	2,817	1,467	373	0 54	0.42	292	31	72
07:42	7.70	3 77	80	1	328.79	323 12	0.50	2,524	293		0	2,817	1,409	374	0 54	0.41	285	30	69
11:45	11.75	4.05	86	1	328 79	322.62	0 50	2,524	293		0	2,817	1,409	348	0.50	0 39	271	30	69
15:36	15 60	3 85	92	1	328.79	322 12	0 50	2,524	293		0	2,817	1,409	366	0 53	0.37	257	30	69
19:53	19 88	4.28	98	1	328 79	321.62	0 50	2,524	293		0	2,817	1,409	329	0.47	0 36	250	30	69
26 28	26.47	6 58	104	1	328.79	321 12	0.50	2,524	147		0	2,671	1,335	203	0.29	0.32	222	30	69
20 20	20.47	0.36	104	-	320.73	J21 12	0.50	2,321	4			-,	Average	332	0 48	0.38	263	30	70

Overall Volume

Volume/FT Volume/FT Volume/Full Pipe Interval Run Total Drawdown Flowmeter Discharge MH Pipe Time Height Wetwell Volume Flow Rate Reading Pressure (ft) (gai/ft) (gal/ft) (gai) (min) (FT) 2524 293 2,373 (gal) (gpm) (MGD) (MGD) (gpm) (psi) 3.02 26 47 Drawdown Interval (ft or Pipe) 3 02 3.6 30 70 8,692 328 0.47 0.38 263 1,068 Drawdown Volume (gal) 7,625

Flowmeter Error -200 % Top of Pipe from New Wet Well= 321 12

Bottom of Pipe from New Wet Well= 319 12 MH 119H Shelf 320.4

MH 119G Shelf 320.5 Town of Middlebury Main Wastewater Pump Station Date:

10/11/2012

Pump Drawdown Testing

Project No Persons Present 11070

Kevin J Camara, P.E., Bob Wells, Jerry Skira

Pump 1 Medium Speed

Static Pressure: 30 psi Pump Speed 45 Hertz 35.1 %

Motor Torque RPM Power

69 feet

1350 rpm 35.6 KW

rower		33.0	N VV										Total						
Run Time	Run Time	Interval Time	Depth from Top of Hatch	Dist. Hatch to TOC	Elev. TOC	Liquid Elevation	Interval Height	Volume/FT Wetwell	Volume/FT MH	Volume/FT Pipe	١	Total /olume/FT	Volume/ Interval	Drawdo Flow Ra		Flown Read		Dischar Pressu	•
(min sec)	(min)	(min)	(in)	(ft)	(ft)	(ft)	(ft)	(gal/ft)	(gal/ft)	(gal/ft)		(gal/ft)	(gal)	(gpm)	(MGD)	(MGD)	(gpm)	(psi)	(FT)
00 00	0.00	0.00	73.5	1	328.79	323.67	0 00												
01:04	1.07	1 07	80	1	328.79	323 12	0 54	2,524	293		0	2,817	1,526	1,431	2.06	1.90	1,319	39	90
02 00	2.00	0 93	86	1	328.79	322.62	0.50	2,524	293		0	2,817	1,409	1,509	2 17	1.84	1,278	40	92
02.52	2.87	0.87	92	1	328.79	322 12	0.50	2,524	293		0	2,817	1,409	1,625	2.34	1 79	1,243		
03:42	3.70	0 83	98	1	328.79	321 62	0 50	2,524	293		0	2,817	1,409	1,690	2.43	1.79	1,243	40	92
04.40	4 67	0.97	104	1	328.79	321 12	0.50	2,524	293		0	2,817	1,409	1,457	2.10	1 77	1,229		
06:21	6.35	1 68	110	1	328.79	320 62	0 50	2,524	293	1,1	186	4,003	2,002	1,189	1.71	1 75	1,215	40	92
													Average	1,484	2 14	1.81	1,255	40	92

Overall Volume

Volume/FT Volume/FT Volume/Full Pipe Run Interval МН Pipe Time Height Wetwell (gal/ft) (min) (ft) (gal/ft) (gal) 293 2,373 3 04 2524 6 35 0.30 Drawdown Interval (ft or Pipe) 3.04 32 712 Drawdown Volume (gal) 7,677 927

Total Drawdown Flowmeter Discharge Reading Volume Flow Rate Pressure (gal) (gpm) (MGD) (MGD) (gpm) (psi) (FT) 40 92 9,316 1,467 2.11 181 1,255

Top of Pipe from New Wet Well= 321 12

Bottom of Pipe from New Wet Well= 319.12 320 4 MH 119H Shelf MH 119G Shelf 320.5 Flowmeter Error

-14.5 %

Date

10/11/2012

Project No : Persons Present 11070

Kevin J. Camara, P E., Bob Wells, Jerry Skira

Pump 1 High Speed

Static Pressure:

30 psi 60 Hertz 69 feet

Pump Speed Motor Torque 62 % 1800 rpm DDM

KEW	1800	ı pı
Power	96	KW

rowei		50 1										Total						
Run	Run	Interval	Depth from	Dist.	Elev	Liquid	Interval	Volume/FT	Volume/FT	Volume/FT	Total	Volume/	Drawdo	wn	Flown	neter	Discha	rge
Time	Time	Time	Top of Hatch	Hatch to TOC	TOC	Elevation	Height	Wetwell	MH	Pipe	Volume/FT	Interval	Flow R	ate	Read	ling	Pressu	ire
(min.sec)	(min)	(min)	(in)	(ft)	(ft)	(ft)	(ft)	(gal/ft)	(gal/ft)	(gal/ft)	(gal/ft)	(gal)	(gpm)	(MGD)	(MGD)	(gpm)	(psi)	(FT)
00.00	0 00	0 00	70.75	1	328.79	323 89	0.00											
00:42	0 70	0 70	77	1	328 79	323 37	0 52	2,524	293	0	2,817	1,467	2,096	3 02	3.18	2,208	54	125
02:05	2.08	1 38	94	1	328 79	321.96	1 42	2,524	293	0	2,817	3,991	2,885	4 15	3.12	2,167	55	127
02:37	2.62	0 53	100	1	328 79	321.46	0.50	2,524	293	0	2,817	1,409	2,641	3 80	3.07	2,132		
03:21	3 35	0.73	106	1	328.79	320.96	0 50	2,524	293	1,186	4,003	2,002	2,729	3.93	3.00	2,083	56	129
04:10	4.17	0 82	112	1	328 79	320 46	0.50	2,524	293	1,186	4,003	2,002	2,451	3 53	2.98	2,069		
05 00	5 00	0.83	118	1	328.79	319.96	0.50	2,524	0	1,186	3,710	1,855	2,226	3 21	2.98	2,069	56	129
05:36	5 60	0.60	123	1	328.79	319 54	0 42	2,524	0	1,186	3,710	1,546_	2,576	3.71	2.80	1,944		
												Average	2,505	3 61	3 06	2,122	55	128

Overall Volume

MH 119G Shelf

Run Time (min) 5.60

Volume/FT Volume/FT Volume/Full Pipe Interva! Height Wetwell МН Pipe (ft) (gal/ft) (gal/ft) (gal) 4.35 2524 293 2,373 Drawdown Interval (ft or Pipe) 4.35 3.4 0 80 Drawdown Volume (gal) 10,990 994 1,898

Total Drawdown Flowmeter Discharge Volume Flow Rate Reading Pressure (FT) (MGD) (psi) (gal) (gpm) (MGD) (gpm) 13,883 2,479 3.57 3.06 2,122 55 128

321 12 Top of Pipe from New Wet Well= 319.12 Bottom of Pipe from New Wet Well= MH 119H Shelf 320 4 Flowmeter Error

-14.4 %

320 5

Date. 10/11/2012 Project No. 11070

Persons Present Kevin J. Camara, P E., Bob Wells, Jerry Skira

Pumps 1 and 2 Low Speed

Static Pressure: 30 psi 69 feet

 Pump Speed
 33 Hertz

 Motor Torque
 13 %

 RPM
 994 rpm

 Power
 9.7 KW

Power		9.71	(VV									Total						
Run	Run	Interval	Depth from	Dist	Elev.	Liquid	Interval	Volume/FT	Volume/FT	Volume/FT	Total	Volume/	Drawdo Flow R		Flown Read		Dischar Pressu	-
Time	Time	Time	Top of Hatch	Hatch to TOC	TOC	Elevation	Height	Wetwell	MH	Pipe	Volume/FT	Interval				-		
(min sec)	(mın)	(min.)	(ın)	(ft)	(ft)	(ft)	(ft)	(gal/ft)	(gai/ft)	(gal/ft)	(gal/ft)	(gal)	(gpm)	(MGD)	(MGD)	(gpm)	(psi)	(FT)
00 00	0 00	0.00	71 5	1	328 79	323.83	0 00											
02.59	2 98	2.98	78	1	328.79	323 29	0 54	2,524	293	0	2,817	1,526	511	0.74	0 64	444	31	72
05 29	5 48	2.50	84	1	328.79	322.79	0.50	2,524	2 9 3	0	2,817	1,409	563	0.81	0 63	438	31	72
08 00	8.00	2.52	90	1	328.79	322 29	0.50	2,524	293	0	2,817	1,409	560	0.81	0 59	410	31	72
10:40	10 67	2.67	96	1	328 79	321.79	0 50	2,524	293	0	2,817	1,409	528	0.76	0.56	389	31	72
13 59	13.98	3.32	102	1	328.79	321 29	0.50	2,524	293	0	2,817	1,409	425	0.61	0 52	361	31	72
19 19	19.32	5 33	109	1	328.79	320.71	0.58	2,524	293	1,186	4,003	2,335	438	0.63	0 48	333		
24:15	24.25	4 93	115	1	328 79	320.21	0 50	2,524	293	1,186	4,003	2,002	406	0.58	0 45	313	30	69
31 30	31.50	7 25	125	1	328.79	319.37	0.83	2,524	0	1,186	3,710	3,092	426	0.61	0 39	271		
31 30	31.30	7 23	123	-		-30.07		-,		•		Average	482	0 69	0.53	370	31	71

Overall Volume

Run Time (min)	Interval Height (ft)	Volume/FT Wetwell (gal/ft)	Volume/FT MH (gal/ft)	Volume/Full Pipe Pipe (gal)	Total Volume	Drawdo Flow Ra		Flowm Read		Dischar Pressu	•
31.50	4.46	2524	293	2,373	(gal)	(gpm)	(MGD)	(MGD)	(gpm)	(psi)	(FT)
	Drawdown Interval (ft or Pipe) _	4.46	3 3	1							
	Drawdown Volume (gal)	11,253	976	2,373	14,602	464	0.67	0.53	370	31	71

 Top of Pipe from New Wet Well=
 321 12

 Bottom of Pipe from New Wet Well=
 319 12

 MH 119H Shelf
 320.4

 MH 119G Shelf
 320.5

Flowmeter Error -20 2 %

Town of Middlebury Main Wastewater Pump Station Date ·

10/11/2012

Project No.:

11070 Kevin J. Camara, P.E., Bob Wells, Jerry Skira

Drawdown Volume (gal)

Pump Drawdown Testing Persons Present

Pumps 1 and 2 Medium Speed

Static Pressure: Pump Speed

30 psi

69 feet

Motor Torque RPM

Power

45 Hertz 35 1 %

1350	rpm
38	KW

												Total						
Run	Run	Interval	Depth from	Dist.	Elev.	Liquid	Interval	Volume/FT	Volume/FT	Volume/FT	Total	Volume/	Drawdo	wn	Flown	eter	Discharg	,e
Time	Time	Time	Top of Hatch	Hatch to TOC	TOC	Elevation	Height	Wetwell	MH	Pipe	Volume/FT	Interval	Flow Ra	ate	Read	ing	Pressure	ž.
(min sec)	(min)	(min.)	(ın)	(ft)	(ft)	(ft)	(ft)	(gal/ft)	(gal/ft)	(gal/ft)	(gal/ft)	(gai)	(gpm)	(MGD)	(MGD)	(gpm)	(psi)	(FT)
00.00	0 00	0 00	65.5	1	328.79	324 33	0 00											
00 45	0.75	0.75	71	1	328.79	323.87	0.46	2,524	293	0	2,817	1,291	1,722	2.48	2.75	1,910	47	109
01.38	1.63	0.88	80	1	328.79	323.12	0.75	2,524	293	0	2,817	2,113	2,392	3.44	2.56	1,778	48	111
02 16	2 27	0.63	86	1	328.79	322 62	0.50	2,524	293	0	2,817	1,409	2,224	3.20	2 50	1,736		
02 56	2.93	0.67	92	1	328.79	322.12	0.50	2,524	293	0	2,817	1,409	2,113	3.04	2.46	1,708	48	111
03 33	3 55	0 62	98	1	328 79	321.62	0.50	2,524	293	0	2,817	1,409	2,284	3 29	2 20	1,528		
04:22	4 37	0 82	104	1	328.79	321 12	0.50	2,524	293	0	2,817	1,409	1,725	2 48	2 39	1,660		
05.43	5.72	1.35	111	1	328.79	320.54	0.58	2,524	293	1,186	4,003	2,335	1,730	2.49	2.38	1,653	48	111
06.45	6.75	1.03	118	1	328 79	319 96	0 58	2,524	0	1,186	3,710	2,164	2,094	3 02	2 35	1,632		
07 38	7 63	0.88	125	1	328 79	319 37	0 58	2,524	0	1,186	3,710	2,164	2,450	3 53	2.34	1,625		
												Average	2,035	2.93	2 45	1,701	48	110
Overall Volu	me																	
		Run					Interval	Volume/FT	Volume/FT	Volume/Full Pipe								

1,123

2,373

Time (min) 6.75

Height MH Pipe Wetwell (gal/ft) (ft) (gal/ft) (gal) 2524 293 2,373 Drawdown Interval (ft or Pipe) 4.96 3.8

12,515

Total Drawdown Flowmeter Volume Flow Rate Reading (gal) (gpm) (MGD) (MGD) 16,011 2,372 3.42 2 45

Discharge Pressure (gpm) (psi) (FT)

48

110

Top of Pipe from New Wet Well=

Flowmeter Error

-28 3 %

1,701

321 12 Bottom of Pipe from New Wet Well= 319 12 MH 119H Shelf 320.4 MH 119G Shelf 320.5

Date: 10/11/2012 Project No. 11070

Persons Present Kevin J. Camara, P.E., Bob Wells, Jerry Skira

Pumps 1 and 2 High Speed

Static Pressure 30 psi 69 feet

 Pump Speed
 60 Hertz

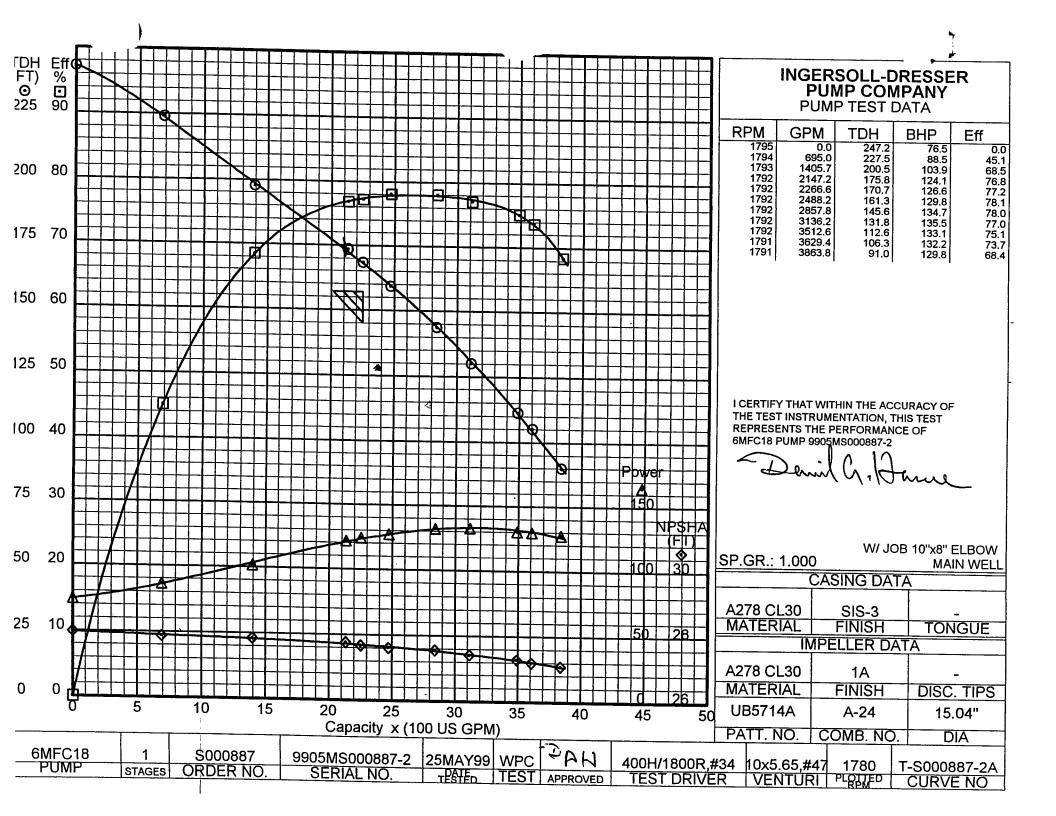
 Motor Torque
 62 %

 RPM
 1800 rpm

 Power
 96 KW

Power		96 1	kW									Total						
Run Time	Run Time	Interval Time	Depth from Top of Hatch	Dist. Hatch to TOC	Elev. TOC	Liquid Elevation	Interval Height	Volume/FT Wetwell	Volume/FT MH	Volume/FT Pipe	Total Volume/FT	Volume/ Interval	Drawdo Flow Ra		Flown Read		Dischar Pressu	-
(min.sec)	(min)	(min)	(in)	(ft)	(ft)	(ft)	(ft)	(gal/ft)	(gal/ft)	(gal/ft)	(gal/ft)	(gal)	(gpm)	(MGD)	(MGD)	(gpm)	(psi)	(FT)
00 00	0.00	0.00	66	1	328.79	324 29	0 00											
00.33	0 55	0.55	72	1	328.79	323 79	0 50	2,524	293	0	2,817	1,409	2,561	3 69	4.68	3,250	78	180
01:26	1.43	0.88	87	1	328 79	322 54	1.25	2,524	293	0	2,817	3,521	3,986	5.74	4.42	3,069	74	171
02 14	2.23	0.80	100	1	328.79	321.46	1 08	2,524	293	0	2,817	3,052	3,815	5 49	4.24	2,944		
02.45	2.75	0.52	106	1	328 79		0.50	2,524	293	1,186	4,003	2,002	3,874	5.58	4 20	2,917	76	176
03:29	3 48	0.73	112		328.79	320.46	0.50	2.524	293	1,186	4,003	2,002	2,729	3.93	4 15	2,882		
04 00	4.00	0.52	118		328.79		0.50	2,524	0	1,185	3,709	1,855	3,589	5.17	4.14	2,875	76	176
04 48	4.80	0.80	130	1	328.79		1 00	2,524	0	600	3,124	3,124	3,905	5.62	4.05	2,813		
04 46	4.00	0.00	150	-	520.75			_,				Average	3,494	5.03	4 27	2,964	76	176

Overall Volume


Run Time (min)	interval Height (ft)	Volume/FT Wetwell (gal/ft)	Volume/FT MH (gal/ft)	Volume/Full Pipe Pipe (gal)	Total Volume	Drawdo Flow Ra		Flowm Read		Discharg Pressur	_
4.80	5 33	2524	293	2,373	(gal)	(gpm)	(MGD)	(MGD)	(gpm)	(psi)	(FT)
	Drawdown Interval (ft or Pipe) _	5 33	3.8	1							
	Drawdown Volume (gal)	13,461	1,110	2,373	16,945	3,530	5 08	4 27	2,964	76	176

Top of Pipe from New Wet Well= 321.12 Flowmeter Error -16.0 %

 Bottom of Pipe from New Wet Well=
 319 12

 MH 119H Shelf
 320 4

MH 119H Shelf 520 4
MH 119G Shelf 320.5

APPENDIX K

FORCEMAIN HEADLOSS AND SYSTEM CURVE CALCULATIONS

MIDDDLEBURY MAIN PUMP STATION PUMP SYSTEM CURVE ANALYSIS ONE PUMP RUNNING

FLOW RATES

High Speed 2,479 gpm 3.56976 3,000 gpm 4.32 3,500 gpm 5.04

STATIC HEAD LOSS

Forcemain Highest Elevation Pump Pressure Gauge Elevation Static Head Loss (Hs) 387.0 Feet 320.0 Feet 67.0 Feet Measured Static Head

30 psi 69.3 Feet

FRICTION HEAD LOSS

Pipe Type	Nominal Diameter (d) (inches)	Inside Diameter (id) (inches)	C Factor	Pipe Length (ft)	Fittings Equivalient Length (ft)	Total Equivallent Pipe Length (L) (ft)	Friction Head Loss High Speed (Hf) (ft)	Friction Head Loss Medium Speed (Hf) (ft)	Friction Head Loss Low Speed (Hf) (ft)
Ductile Iron	6	6.22	120	2	6	8	3.11	4.42	5.88
Ductile Iron	10	10.34	120	25	20	45	1.47	2.10	2.79
Ductile Iron	12	12.4	120	8	187	195	2 64	3.76	5.00
Ductile Iron	16	16 61	120	172	108	280	0.91	1.30	1.73
Ductile Iron	18	18.69	120	600	107	707	1.30	1.85	2.46
PVC	18	16.534	140	10,969	680	11,649	29.24	41 62	55.35
	Totals			11,776			38.68	55.05	73.22

 $Hf = 0.002083 \times L \times (100/C)^1.85 \times (gpm^1.85 / id^4.8655)$

FITTINGS EQUIVALIENT LENGTH

FITTINGS EQUIVALIENT LENGTH			
	No.	Equivallent Length Per Fitting	Total Equivalient
DI 01 (T (T1-1)		•	Length
Pipe Size/Type/Fitting 6" Ductile Iron	Fittings	(ft)	(ft)
6" x 12" Reducer_	1	6	6
		Total	6
10" Ductile Iron			
10" x 18" Reducer	2	7	14
Plug Valve FO	1	6	6
		Total	20
12" Ductile Iron			
90° Elbow	1	31	31
Swing Check Valve FO	1	77	77
Plug Valve FO	1	7	7
Sudden Enlargement	1	7	7
Tee Side Out _	1	65	65
		Total	187
16" Ductile Iron			
Tee Side Out	1	88	88
Plug Valve FO	1	9	9
11.25° Elbow	1	4	4
16" x 18" Reducer	1	7	7
		Total	108
18" Ductile Iron			
90° Elbow	2	48	96
Plug Valve FO_	1	11	11
		Total	107
18" PVC			
45° Elbow	26	20	520
22.5° Elbow	12	10	120
11.25° Elbow	8	5	40
		Totai	680

TOTAL DYNAMIC HEAD (TDH)

	Flow				System Pre	essure
	Rate	Hs	Hf	TDH	Observ	ed
	(gpm)	(ft)	(ft)	(ft)	psı	(ft)
High Speed	2,479	67 0	38.68	105.68	55	127.05
	3,000	67.0	55.05	122.05		
	3,500	67.0	73.22	140.22		

MIDDDLEBURY MAIN PUMP STATION PUMP SYSTEM CURVE ANALYSIS ONE PUMP RUNNING LOWERING C FACTORS TO MATCH MEASURED SYSTEM PRESSURE

FLOW RATES

High Speed 2,479 gpm

3,000 gpm 3,500 gpm

STATIC HEAD LOSS

Forcemain Highest Elevation Pump Pressure Gauge Elevation Static Head Loss (Hs) 387.0 Feet 320.0 Feet 67.0 Feet Measured Static Head

30 psi 69.3 Feet

FRICTION HEAD LOSS

Pipe Type	Nominal Diameter (d) (inches)	Inside Diameter (id) (inches)	C Factor	Pipe Length (ft)	Fittings Equivalient Length (ft)	Total Equivalient Pipe Length (L) (ft)	Friction Head Loss High Speed (Hf) (ft)	Friction Head Loss Medium Speed (Hf) (ft)	Friction Head Loss Low Speed (Hf) (ft)
Ductile Iron	6	6.22	91	2	6	8	5.19	7.38	9.82
Ductile Iron	10	10.34	91	25	20	45	2.46	3.50	4 66
Ductile Iron	12	12.4	91	8	187	195	4.40	6.27	8.34
Ductile Iron	16	16.61	91	172	108	280	1.53	2 17	2.89
Ductile Iron	18	18 69	91	600	107	707	2.17	3 09	4.11
PVC	18	16 534	111	10,969	680	11,649	44.93	63 94	85.04
	Totals			11,776			60 67	86.35	114 84

 $Hf = 0.002083 \times L \times (100/C)^1.85 \times (gpm^1.85 / id^4.8655)$

FITTINGS EQUIVALIENT LENGTH

	No.	Equivalient Length Per Fitting	Total Equivalient Length
Pipe Size/Type/Fitting	Fittings	(ft)	(ft)
6" Ductile Iron		_	_
6" x 12" Reducer	1	6 Total	6
		rotai	Ū
10" Ductile Iron			
10" x 18" Reducer	2	7	14
Plug Valve FO	1	6	6
		Total	20
12" Ductile Iron			
90° Elbow	1	31	31
Swing Check Valve FO	1	77	77
Plug Valve FO	1	7	7
Sudden Enlargement	1	7	7
Tee Side Out	1	65	65
		Total	187
16" Ductile Iron			
Tee Side Out	1	88	88
Plug Valve FO	1	9	9
11.25° Elbow	1	4	4
16" x 18" Reducer	1	7	7
		Total	108
18" Ductile Iron			
90° Elbow	2	48	96
Plug Valve FO	1	11	11
		Total	107
18" PVC			
45° Elbow	26	20	520
22.5° Elbow	12	10	120
11.25° Elbow	8	5	40
		Total	680

TOTAL DYNAMIC HEAD (TDH)

	Flow				System Pro	
	Rate (gpm)	Hs (ft)	Hf (ft)	TDH (ft)	Observ psi	ed (ft)
High Speed	2,479	67 0	60.67	127 67	55	127.05
Medium Speed	3,000	67 0	86.35	153 35	40	92.4
Low Speed	3,500	67.0	114.84	181.84	30	69 3

MIDDDLEBURY MAIN PUMP STATION PUMP SYSTEM CURVE ANALYSIS TWO PUMPS RUNNING

FLOW RATES

High Speed 3,530 gpm
Medium Speed 2,372 gpm
Low Speed 464 gpm

STATIC HEAD LOSS

Forcemain Highest Elevation Pump Pressure Gauge Elevation 387 0 Feet 320.0 Feet Measured Static Head

30 psi 693 Feet

Static Head Loss (Hs)

320.0 Feet 67 0 Feet

FRICTION HEAD LOSS

Pipe Type	Nominal Diameter (d) (inches)	Inside Diameter (id) (inches)	C Factor	Pipe Length (ft)	Fittings Equivalient Length (ft)	Total Equivalient Pipe Length (L) (ft)	Friction Head Loss High Speed (Hf) (ft)	Friction Head Loss Medium Speed (Hf) (ft)	Friction Head Loss Low Speed (Hf) (ft)
Ductile Iron	6	6.22	120	2	6	8	5 98	2 86	0.14
Ductile Iron	10	10.34	120	25	20	45	2 84	1 36	0 07
Ductile Iron	12	12 4	120	8	187	195	5 08	2 43	0 12
Ductile Iron	16	16 61	120	172	108	280	1.76	0.84	0 04
Ductile Iron	18	18 69	120	600	107	707	2.50	1.20	0.06
PVC	18	16 534	140	10,969	680	11,649	56 23	26 95	1.32
	Totals			11,776			74.38	35 65	1.74

 $Hf = 0.002083 \times L \times (100/C)^1.85 \times (gpm^1.85 / id^4.8655)$

FITTINGS EQUIVALIENT LENGTH

Pipe Size/Type/Fitting 6" Outfile Iron	No. Fittings	Equivalient Length Per Fitting (ft)	Total Equivalient Length (ft)
6" x 12" Reducer	1	6	6
		Total	6
10" Ductile Iron			
10" x 18" Reducer	2	7	14
Plug Valve FO	1	6	6
_		Total	20
12" Ductile Iron			
90° Elbow	1	31	31
Swing Check Valve FO	1	77	77
Plug Valve FO	1	7	7
Sudden Enlargement	1	7	7
Tee Side Out _	1	65	65
		Total	187
16" Ductile Iron			
Tee Side Out	1	88	88
Plug Valve FO	1	9	9
11 25° Elbow	1	4	4
16" x 18" Reducer _	1	7	7
		Total	108
18" Ductile Iron			
90° Elbow	2	48	96
Plug Valve FO	1	11	11
		Total	107
18" PVC			
45° Elbow	26	20	520
22 5° Elbow	12	10	120
11.25° Elbow _	8	5	40
		Total	680

TOTAL DYNAMIC HEAD (TDH)

	Flow Rate	Hs	Hf	тон	System Pressure Observed	
	(gpm)	(ft)	(ft)	(ft)	psı	(ft)
High Speed	3,530	67 0	74 38	141 38	76	175.56
Medium Speed	2,372	67 0	35.65	102 65	48	110 88
Low Speed	464	67 0	1 74	68 74	31	71 61

MIDDDLEBURY MAIN PUMP STATION PUMP SYSTEM CURVE ANALYSIS

TWO PUMPS RUNNING LOWERING C FACTORS TO MATCH MEASURED SYSTEM PRESSURE

FLOW RATES

High Speed 3,530 gpm Medium Speed 2,372 gpm Low Speed 464 gpm

STATIC HEAD LOSS

Forcemain Highest Elevation Pump Pressure Gauge Elevation Static Head Loss (Hs)

387 0 Feet 320.0 Feet 67 0 Feet Measured Static Head

30 psi 69.3 Feet

FRICTION HEAD LOSS

Pipe Type	Nominal Diameter (d) (inches)	Inside Diameter (id) (inches)	C Factor	Pipe Length (ft)	Fittings Equivalient Length (ft)	Total Equivalient Pipe Length (L) (ft)	Friction Head Loss High Speed (Hf) (ft)	Friction Head Loss Medium Speed (Hf) (ft)	Friction Head Loss Low Speed (Hf) (ft)
Ductile Iron	6	6 22	95	2	6	8	9.21	4.41	0.22
Ductile Iron	10	10.34	95	25	20	45	4.37	2.09	0 10
Ductile Iron	12	12.4	95	8	187	195	7 82	3.75	0.18
Ductile Iron	16	16.61	95	172	108	280	2.71	1.30	0.06
Ductile Iron	18	18 69	95	600	107	707	3.85	1.85	0.09
PVC	18	16.534	115	10,969	680	11,649	80 92	38.78	1 90
	Totals			11.776			108.88	52.18	2.55

Hf = 0.002083 x L x (100/C)^1.85 x (gpm^1 85 / id^4.8655)

FITTINGS EQUIVALIENT LENGTH

Pipe Size/Type/Fit	tting	No. Fittings	Equivalient Length Per Fitting (ft)	Total Equivalient Length (ft)
	6" x 12" Reducer	1	6	6
	_		Total	6
10" Ductile Iron				
	10" x 18" Reducer	2	7	14
	Plug Valve FO	1	6	6
	_		Total	20
12" Ductile Iron				
	90° Elbow	1	31	31
Sv	ving Check Valve FO	1	77	77
	Plug Valve FO	1	7	7
S	udden Enlargement	1	7	7
	Tee Side Out	1	65	65
			Total	187
16" Ductile Iron				
	Tee Side Out	1	88	88
	Plug Valve FO	1	9	9
	11 25° Elbow	1	4	4
	16" x 18" Reducer _	1	7	7
			Total	108
18" Ductile Iron				
	90° Elbow	2	48	96
	Plug Valve FO _	1	11	11
			Total	107
18" PVC				
	45° Elbow	26	20	520
	22.5° Elbow	12	10	120
	11.25° Elbow _	8	5	40
			Total	680

TOTAL DYNAMIC HEAD (TDH)

	Flow Rate	Hs	Hf	трн	System Pressure Observed	
	(gpm)	(ft)	(ft)	(ft)	psi	(ft)
High Speed	3,530	67 0	108.88	175 88	76	175 56
Medium Speed	2,372	67.0	52 18	119.18	48	110.88
Low Speed	464	67 0	2.55	69 55	31	71 61

APPENDIX L
ICE PIGGING PROPOSAL AND INFORMATION

Proposal From:

Utility Service Co.

INCORPORATED

www.utilityservice.com

535 Courtney Hodges Blvd. P.O. Box 1350, Perry, Georgia 31069 Phone: 800-223-3695

FAX SIGNED COPY TO: 478-987-2991

Date March 26 th 2013		SFID:29865	CN: 7556	1 SO:	Page	NO. 1 OI <u>2</u>
Proposal Submitted to			Attn		Phone	802-388-6514
Middlebury Wastewater De	ept.		Mr R. We	ells	Fax	
Address			Job Name			
94 Main Street			Force Ma	ain - Ice Pigging Pi	roject	
,	tate	Zip Code	Job Location	MARATE		County / Parish
	/T	05753 d Material	Middlebi	ury WWTP Est. Start Date	Cube	l nitted by
Length Approx. 12,000 feet		& 18" DIP & PVC		TBC		Kelley
Utility Service Co., Inc. agrees to provide			ded to complete	<u> </u>	<u> </u>	
c. Network Oper d. MOT (Mainter e. Suitable conne	ediments cleaned nation proy through de the fo to productation to rators to inance of ections for the cations and the cations are cations as the cations are cations and the cations are cations as the cations	, loose deposits, and and procedures are lovided by the Owner of Friday delivery solutions: Illowing: It is the ice slurry, store the ice making isolate and re-open particle. Traffic) procedures or ice insertion at the	I biofilms fi listed in Ad r to USCI, I hedule over g equipment bumps, valv where nece e PS and no	rom the water mains of dendum A. USCI estimates this pro- ra period of three week t, res and hydrants as ne	overed u roject wil ks.	nder this proposal. Il take 9 full loads to luring the project,
One hundred and Eight Thou				`	****	,000.00 + tax).
Payment to be made as follows: Paym	ent in Fi	uu upon Completio	on ot work	– pius aii appiicable	taxes	
Remittance Addres	s: Utilit	y Service Compan	y, Inc., P. (O. Box 116554, Atlan	ta, GA	30368-6554
All material is guaranteed to be as specified. All workmanlike manner according to specifications alteration or deviation from above specifications only upon written orders, and will become an ex All agreements contingent upon strikes, accident carry fire, tornado and other necessary insurance. Workmen's Compensation Insurance.	I work to be constituted, post involving extra charge over the constitution of the con	ompleted in a substantial ter standard practices. Any tra costs will be executed er and above the estimate. eyond our control. Owner to	Authorized USCI Signature — Note: This pr	Mal A, l	7	_
Acceptance of Proposal - The		es, specifications and condi- nent will be made as outline		ctory and are hereby accepted	You are au	thorized to do the work as
]	,		Signatu	ire		

Printed Name

Date of Acceptance

Proposal From:

Utility Service Co.

www.utilityservice.com

535 Courtney Hodges Blvd. P.O. Box 1350, Perry, Georgia 31069 Phone: 800-223-3695

FAX SIGNED COPY TO: 478-987-2991

Length Approx. 12,000 feet		" & 18" DIP & P\	VC	TBC	IL Date	I	Kelley
Lamoth	Ciro	and Material		Est. Star	rt Date	Sul	omitted by
Middlebury	VT	05753		Middlebury W\	NTP		
City	State	Zip Code	- 1 -	lob Location			County / Parish
94 Main Street				Force Main - Id	e Pigging	Project	
Address		-		lob Name			
Middlebury Wastewat	er Dept.	\	/ 1	Mr R. Wells		Fax	
Proposal Submitted to		,		Attn		Phone	802-388-6514
Date March 26 th 2013		SFID: 29865	\.	CN: S	iO:		No. <u>2</u> of <u>2</u>

- 4. Owner agrees that there is considerable expense to make 2700 gallons of ice and that the ice cannot be held for more than 12 hours before it becomes unusable. If on a scheduled work day the Owner cannot isolate the water main or does not have the needed personnel, USCI shall charge the Owner the full rate of \$12,000 per day.
- 5. USCI shall not charge the Owner the daily rate, if USCI cannot perform the complete day's work due to those factors under USCI's control, i.e. the ice is not in suitable condition, USCI cannot provide the necessary labor, equipment failure, etc.
- 6. Due to the potential condition or deterioration of assets that may or may not have been maintained, Owner shall indemnify USCI, and all officers and agents of USCI, against all damages, costs or expenses that may result from damage to property or personal injury caused by reason of faulty performance of any work in connection with this Agreement. Such indemnity includes, but is not limited to, damage to property or personal injury occasioned by any negligence, act or omission to act by USCI or any of its servants, agents, employees, or any subcontractor retained by USCI to perform any of the work contemplated by or under this agreement.
- 7. Once delivered to the job site, USCI transfers ownership of the ice slurry to the Owner. All ice delivered to and removed from the water main, along with the wastes generated from the resulting process shall be the sole property of the Owner. Owner shall dictate the exact disposal procedures to be employed during the process.